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Resum
El camp de la intel·ligència artificial ha portat al desenvolupament de grans models

de llenguatge avançats amb impressionants habilitats lingüístiques. No obstant això, en-
cara no està clar fins a quin punt aquests models posseeixen habilitats metacognitives, les
quals són fonamentals per a un raonament i aprenentatge avançats. Aquest projecte té
com a objectiu avaluar les habilitats de metacognició i pensament crític en els grans mo-
dels de llenguatge, amb un enfocament en la identificació de les escales i dimensions més
efectives per a l’avaluació. Proposem un marc integral, que abasta tres dimensions clau:
la necessitat de processos de pensament crític, la dificultat de calibrar el conegut i l’inco-
negut, i la dificultat en identificar informació rellevant. Aquest marc s’utilitza per anotar
instàncies de preguntes en diversos benchmarks de BIG-Bench i HELM, destinats a me-
surar habilitats cognitives avançades en els grans models de llenguatge. Les anotacions
són generades pel model de llenguatge de última generació, GPT-4. Aquestes anotacions
s’utilitzen després com a predictors per a construir models de rendiment per a diversos
grans models de llenguatge en aquests benchmarks, amb l’objectiu final de determinar
fins a quin punt aquests benchmarks realment mesuren les capacitats metacognitives.
Els nostres resultats mostren que, mentre que molts models manquen de capacitats me-
tacognitives, els models més grans mostren algunes indicacions de tals habilitats. A més,
l’ús d’una escala multidimensional per a les demandes metacognitives millora la predic-
tibilitat del rendiment en comparació amb una escala integrada única. En proporcionar
una eina d’avaluació per a la metacognició en els grans models de llenguatge, aquest
projecte ofereix informació sobre l’efectivitat dels benchmarks en l’avaluació de les habi-
litats metacognitives. Els resultats destaquen la importància d’un disseny meticulós dels
benchmarks i el potencial de les escales multidimensionals per capturar la naturalesa
complexa de la metacognició.

Paraules clau: Avaluació d’IA, GPT4, grans models de llenguatge, metacognició, pensa-
ment crític, predictibilitat.
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Resumen
El campo de la inteligencia artificial ha llevado al desarrollo grandes modelos de len-

guaje avanzados con impresionantes habilidades lingüísticas. Sin embargo, aún no está
claro hasta qué punto estos modelos poseen habilidades metacognitivas, las cuales son
fundamentales para un razonamiento y aprendizaje avanzados. Este proyecto tiene como
objetivo evaluar las habilidades de metacognición y pensamiento crítico en los grandes
modelos de lenguaje, con un enfoque en la identificación de las escalas y dimensiones
más efectivas para la evaluación. Proponemos un marco integral, que abarca tres dimen-
siones clave: la necesidad de procesos de pensamiento crítico, la dificultad de calibrar lo
conocido y lo desconocido, y la dificultad en identificar información relevante. Este mar-
co se utiliza para anotar instancias de preguntas en varios benchmarks de BIG-Bench y
HELM, destinados a medir habilidades cognitivas avanzadas en los grandes modelos de
lenguaje. Las anotaciones son generadas por el modelo de lenguaje de última generación,
GPT-4. Estas anotaciones se utilizan luego como predictores para construir modelos de
rendimiento para varios grandes modelos de lenguaje en estos benchmarks, con el obje-
tivo final de determinar hasta qué punto estos benchmarks realmente miden las capaci-
dades metacognitivas. Nuestros resultados muestran que, mientras que muchos modelos
carecen de capacidades metacognitivas, los modelos más grandes muestran algunas in-
dicaciones de tales habilidades. Además, el uso de una escala multidimensional para
las demandas metacognitivas mejora la predictibilidad del rendimiento en comparación
con una escala integrada única. Al proporcionar una herramienta de evaluación para la
metacognición en los grandes modelos de lenguaje, este proyecto ofrece información so-
bre la efectividad de los benchmarks en la evaluación de las habilidades metacognitivas.
Los resultados destacan la importancia de un diseño meticuloso de los benchmarks y el
potencial de las escalas multidimensionales para capturar la naturaleza compleja de la
metacognición.

Palabras clave: Evaluación de IA, GPT4, grandes modelos de leguaje, metacognición,
pensamiento crítico, predictibilidad.
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Abstract
The rapidly growing field of artificial intelligence has led to the development of ad-

vanced Large Language Models (LLMs) with impressive language skills. However, it
is still unclear the extent to which these models possess metacognitive abilities, which
are critical for advanced reasoning and learning. This study aims to evaluate metacogni-
tion and critical thinking abilities in LLMs, with a focus on identifying the most effective
scales and dimensions for assessment. We propose a comprehensive framework, encom-
passing three key dimensions: the need for critical thinking processes, the difficulty of
calibrating knowns and unknowns, and the difficulty in identifying relevant informa-
tion. This framework is used to annotate question instances across several benchmarks
from BIG-Bench and HELM, aimed at measuring advanced cognitive skills in LLMs. The
annotations are generated by the state-of-the-art LLM, GPT-4. These annotations are
then used as predictors to build performance models for various LLMs on these bench-
marks, with the ultimate goal of determining the extent to which the benchmarks truly
measure metacognitive capabilities. Our findings reveal that while many models lack
metacognitive capabilities, larger models exhibit some indications of such abilities. Fur-
thermore, the use of a multi-dimensional scale for metacognitive demands improves the
predictability compared to a single integrated scale. By providing an evaluation tool for
metacognition in LLMs, this study provides insights into the effectiveness of benchmarks
in assessing metacognitive abilities. The finding highlights the importance of careful
benchmark design and the potential of multi-dimensional scales in capturing the com-
plex nature of metacognition.

Key words: AI evaluation, GPT-4, Large Language Models, metacognition, critical think-
ing, predictability
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CHAPTER 1

Introduction

In recent years, there has been significant advancements in the field of Artificial Intel-
ligence (AI) and Large Language Models (LLMs), which have demonstrated profound
capabilities in processing and generating human-like text. These models can imitate con-
versational styles, understand context and generate coherent responses, making them
incredibly valuable in applications ranging from automating customer service to sup-
porting complex decision-making processes. Despite these advances, there remains a
significant challenge in the field of AI, which is the ability to perform self-efficacy tasks
similar to human metacognition, including self-evaluation and critical thinking.

Metacognition is a higher-order cognitive ability that enables individuals to monitor,
control, and adapt their cognitive processes to the demands of a task. In humans, this
ability is critical for effective learning and problem solving. Applying these processes
to AI means developing systems that are not only self-aware, but also capable of assess-
ing their performance and adapting their strategies in complex situations. The gap in
implementing these self-regulatory functions in AI systems highlights a significant lim-
itation that limits their applicability in scenarios that require autonomous adaptability
and critical decision-making.

This work aims to fill this gap by proposing a systematic framework for evaluating
and measuring the metacognitive demands of various AI tasks. The main contribution
is the development of a predictive framework that uses a newly created metacognitive
rubric to estimate how well AI systems can handle unseen tasks that require these higher-
order thinking skills. This is achieved by analysing different instances of tasks designed
to test metacognitive skills, and then quantifying the complexity and demands of these
tasks.

1.1 Motivation

This project is conducted in collaboration with the OECD AI Skills Reasoning Group1,
driven by the need to systematically quantify the demands of metacognition and critical
thinking in various question instances. The primary motivation behind this research is
to develop a robust framework that can predict the performance of AI systems on new,
unseen instances by accurately measuring these metacognitive demands.

The main focus of this project is the development and application of a comprehensive
rubric designed to assess the metacognitive demands of tasks. This rubric will serve as a
critical tool in evaluating whether existing benchmarks for metacognition truly capture
the essence of this complex skill. By achieving this, we aim to ensure that AI systems are

1https://oecd.ai/en/work-innovation-productivity-skills

1

https://oecd.ai/en/work-innovation-productivity-skills


2 Introduction

not only advanced in their technical capabilities but also exhibit a level of thinking and
reasoning comparable to human beings.

By systematically quantifying metacognitive demands, we can imporove our under-
standing of how AI systems process and respond to complex tasks. This will allow us
to develop more sophisticated AI models that are better equipped to handle real-world
challenges. Ultimately, the goal of this project is to bridge the gap between human cog-
nitive abilities and AI performance, fostering the development of AI systems that can
think, reason, and adapt in ways that are more aligned with human intelligence.

1.2 Objectives

The primary objectives of this project are:

1. Benchmark evaluation: To evaluate existing metacognition benchmarks by analysing
the performance of various language models. This involves determining whether
these benchmarks are valid indicators of metacognitive abilities or if they mix to-
gether metacognitive demands with general task difficulty.

2. Rubric development: To develop and validate a comprehensive rubric for mea-
suring metacognitive demands. This rubric should accurately reflect what the in-
tended constructs and be capable of predicting language model performance. The
goal is to ensure that the rubric can distinguish between tasks that require metacog-
nitive skills and those that do not.

3. Model comparison: To compare the performance of different language models on
metacognitive tasks. This includes analysing the evolution of metacognitive capa-
bilities across different generations and architectures of language models, thereby
identifying trends and improvements in AI metacognition.

4. Scenario-based assessment: To systematically assess the predictive power of metacog-
nition demands and general difficulty on language model performance across dif-
ferent scenarios. This involves evaluating both metacognition-loaded and non-
metacognition-loaded datasets using distinct scales.

1.3 Structure

The report is structured as follows:

Chapter 2 provides provides an overview of metacognition and critical thinking, as
well as the role of Large Language Models (LLMs) in automatic annotation.

Chapter 3 details the benchmarks and datasets used in the study. It includes a descrip-
tion of the benchmark repositories, and explains the selection criteria for the datasets that
align with our research objectives.

Chapter 4 defines the metacognitive demands and the development of the rubric. It
discusses the different scales created, their prompt designs, and the validation process to
ensure they accurately measure the intended constructs.

Chapter 5 outlines the experimental setup, including data processing, the selection of
Large Language Models, and the configuration of assessors. It also describes the different
scenarios investigated using the developed scales and benchmarks.



1.3 Structure 3

Chapter 6 presents the results of the experiments. It analyses the performance of
various language models across different scenarios, comparing the effectiveness of the
different scales in predicting model performance.

Chapter 7 summarizes the key findings of the research, discusses their implications,
and suggests potential directions for future work.





CHAPTER 2

Background

2.1 Metacognition and Critical Thinking

Metacognition and critical thinking are a group of sophisticated capabilities that refer
to "thinking about thinking" [1] [2]. In the field of artificial intelligence, these cognitive
skills are increasingly recognised as essential for the development of robust AI systems
and highlights the importance of metacognition in enabling AI systems to monitor their
own learning processes, identify areas where they lack knowledge, and actively seek out
additional information[3]. Miller (2019) [4] argues that critical thinking capabilities are
necessary for AI systems to reason under uncertainty, evaluate the credibility of informa-
tion, and generate justifications for their decisions.

Recent research shows how AI is progressing dramatically but focusing on narrow
applications, therefore proposing to study human cognitive capabilities to enhance AI
systems with skills like generalisability and ethical reasoning [5] based on D. Kahneman’s
theory of thinking fast and slow [6]. Similarly in another recent study, the authors pro-
pose a metacognitive approach as a safety measure, enabling AI systems to self-diagnose
potential failures and adapt to new situations [7]. The rise of generative AI brings the
question of metacognition to the forefront. By enabling these systems to understand and
monitor their own actions, we can significantly improve their performance. The incorpo-
ration of a metacognition module in the generative agents can allow them self-reflect and
enhance goal-directed behaviour[8], and can even go beyond with potential applications
in psychology, education and interactive media[8].

However a lack of metacognitive abilities in AI can lead to challenges in various areas
including ethical and societal impact, AI governance, and even bias and discrimination[9].
By incorporating metacognition and critical thinking into AI systems, researchers are
moving towards the development of more flexible, adaptable, and ultimately trustwor-
thy intelligent agents [10].

An important challenge has been highlighted discussing the understanding the de-
gree of metacognition demand imposed on users [11]. However, a more significant chal-
lenge lies in estimating the level of metacognition and critical thinking these systems pos-
sess, especially when presented with new, unseen instances. While advancements have
been made in areas like self-monitoring and justification generation, accurately gauging
an AI’s ability to adapt its thinking process or assess the validity of unfamiliar informa-
tion remains an open question[12].

Evaluating metacognition in AI presents particular difficulties in terms of generalis-
ability. Current metrics used to assess these capabilities may not translate well to un-
seen scenarios, as highlighted by Cox & Raja [13]. Furthermore, the potential for "super-
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intelligence" to emerge, where AI surpasses human comprehension in its reasoning and
decision-making, raises concerns about our ability to definitively assess its metacognitive
abilities [14].

Metacognition is also associated with "calibration", the ability to determine how sure
an individual is about their own knowledge. This is also common in machine learning,
with metrics of confidence estimation quality based on calibration. A model is calibrated
if for all the predictions or answers it says it is correct X% of the times, then it is actually
correct X% of the times [14]. For instance, if we take all the questions the model says
something is true with 70% confidence (or expresses a probability of 70% that it is true),
then, if they are true 70% of the time, the model is perfectly calibrated for those ques-
tions [15]. Calibration requires binning multiple questions or calculating metrics such as
the Brier score decomposition, apart from asking confidence to the respondent or access
to the logprobs. Instead, we will explore more direct and general ways of evaluating
metacognition and critical thinking.

2.2 Large Language Models (LLMs)

Large Language Models (LLMs) have transformed the natural language processing (NLP)
field by generating cohesive and contextually appropriate text from a provided prompt
[21]. These models have undergone training with large datasets, allowing them to fore-
cast the likelihood of a word sequence and produce text that resembles human language
patterns closely [22]. LLMs are built on the transformer model, using self-attention to an-
alyze word sequences simultaneously and assess the importance of each word compared
to the rest within a sentence [23]. LLMs are able to grasp long-distance relationships and
comprehend the surrounding context in the text with greater efficiency [24]).

LLMs such as GPT (Generative Pre-trained Transformer) have demonstrated out-
standing adaptability across a range of NLP tasks, including text generation, translation,
summarizing, and question-answering [25]. Their ability to perform zero-shot or few-
shot learning, where the model can understand and execute tasks with little to no task-
specific training, has been particularly transformative [26]. For example, GPT-4, one of
the most advanced LLMs, has shown remarkable proficiency in understanding and gen-
erating human-like text across various domains, achieving state-of-the-art performance
in many benchmarks without task-specific fine-tuning [21].

The training of LLMs involves unsupervised learning on diverse datasets, which al-
lows them to develop a broad understanding of language and general knowledge. This
extensive training process, coupled with the transformer architecture, equips LLMs with
the capability to generalize well to new tasks and domains [27]. However, the deploy-
ment of these models also raises concerns regarding computational cost, ethical implica-
tions, and potential biases embedded in the training data [28] [29].

In addition to their practical applications, LLMs have also contributed significantly
to theoretical advancements in NLP. Research has shown that the self-attention mecha-
nism in transformers not only improves performance but also provides insights into the
inner workings of language models, such as how they represent syntactic and seman-
tic information [30]. This has opened up new avenues for exploring the interpretability
and explainability of LLMs, which are crucial for their responsible and transparent use
in real-world applications [31].
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2.2.1. Automatic Annotation using LLMs

Numerous machine learning models depend heavily on extensive datasets with labeled
information to perform effectively. However, the task of labeling such extensive data
can be both time-consuming and financially and computationally burdensome. This is
particularly true for text annotation, which involves navigating the intricate nuances of
natural language, making it a notably laborious and complex process.

LLMs have become increasingly proficient and are now commonly utilized as auto-
matic annotators [45, 46, 47], a process where a model identifies and labels data within a
text. For example, one can pose a prompt (or query) to an LLM, such as: "Does the fol-
lowing sentence contain a phrasal verb: [...]?" By tailoring this prompt for each specific
sentence, it is possible to swiftly generate an annotated dataset. This dataset indicates
whether each sentence includes a phrasal verb, serving as a foundational resource for
subsequent analytical or processing tasks.

It is not surprising that one of the notable applications of GPT-4 is its use in auto-
matic annotation. This efficiency and performance is critical as the quality and accuracy
of automatic annotation directly affect the performance of downstream machine learning
models that rely on this annotated data for training [32]. GPT-4’s sophisticated capabili-
ties make it particularly well-suited for this task due to its ability to understand context
at a granular level and handle a wide range of tasks effectively [21]. Integrating GPT-
4 into the automatic annotation process can significantly reduce the time and resources
required for data labeling while simultaneously enhancing the quality of the resulting
datasets [25].

The architecture of GPT-4 allows it to effectively parse and comprehend complex lan-
guage structures, making it proficient at identifying subtle nuances in text that are crucial
for accurate annotation [22]. This proficiency is further enhanced by its training on ex-
tensive and diverse datasets, which provide GPT-4 with a comprehensive understanding
of various contexts and domains [27]. Moreover, GPT-4’s ability to perform few-shot
learning enables it to adapt to new annotation tasks with minimal additional training,
enhancing its practicality in automatic annotation scenarios [26].

In practical applications, deploying GPT-4 for automatic annotation can streamline
workflows in data-intensive fields such as biomedical research, legal document analy-
sis, and content moderation. By automating the annotation process, organizations can
allocate human resources to more complex tasks requiring deeper analysis and judg-
ment, thereby optimizing overall productivity and efficiency [32]. Additionally, the high-
quality annotations produced by GPT-4 can lead to the development of more accurate
and robust machine learning models, as the initial training data is of superior quality
[29].

2.3 Assessors

An assessor is a conditional probability estimator designed to predict the probability of
success for AI systems at the instance granularity level. The concept of assessors as a
means to predict scores using machine learning techniques was initially introduced in a
general context by [35]. The approach was further explored specifically for LLMs in [48]
and [49, Sec. 5], yielding encouraging outcomes.

In a nutshell, assessor models allow us to anticipate the level of success for a partic-
ular instance without running it through the AI system or language model at all. The
primary function of an assessor is to analyze various features of a given task and the
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corresponding model performance to predict the model’s effectiveness on new instances.
By doing so, assessors can provide valuable insights into the strengths and weaknesses
of different models, guiding further improvements and refinements.

In this context, we use assessors to estimate the likelihood of success for LLMs on
metacognitive tasks. Metacognitive tasks often involve self-evaluation, awareness of
knowledge gaps, and the ability to distinguish between essential and non-essential infor-
mation. These tasks are inherently complex and require sophisticated evaluation mecha-
nisms to accurately measure model performance [33]. To build effective assessors, we
employed machine learning algorithms that can learn from instance-level data. This
granular approach allows the assessors to capture detailed patterns and relationships
within the data, leading to more accurate predictions [34]. The specific machine learning
techniques and configurations used for training the assessors are discussed in detail in
the Experimental Setting chapter.



CHAPTER 3

Data

In this chapter, we discuss the data collected as well the methodology used to conduct
our analysis. Instance-level data is crucial for AI evaluation as it provides a detailed and
granular view of a large language model’s performance on specific inputs. This allows
for a more thorough and accurate assessment of the model’s capabilities, offering insights
into how the model performs on individual examples rather than just overall statistics.
Two primary task repositories, BIG-bench and HELM, serve as the foundation for evalu-
ating the capabilities of large language models. Both repositories provide instance-level
data for numerous language models, which is essential for our study.

3.1 BIG-bench

The Beyond the Imitation Game benchmark (BIG-bench) [36] is a collaborative bench-
mark designed to evaluate the capabilities of large language models (LLMs) across a
wide range of tasks. The primary objective of BIG-bench is to probe the limits of LLMs
and to extrapolate their potential future capabilities. This benchmark includes tasks from
diverse domains such as common sense reasoning, algebra, causal reasoning, metacog-
nition, and critical thinking, among others.

For the purpose of this project, we have identified and selected tasks within the BIG-
bench repository that are particularly relevant to our focus on metacognition. Specifically,
we concentrated on tasks labeled under "self-evaluation," "sufficient information," and
"self-awareness." These labels indicate tasks that require the model to engage in higher-
order thinking processes, such as evaluating its own knowledge and reasoning capabili-
ties.

From the extensive list of tasks available in BIG-bench, we have chosen three tasks
that align closely with our research objectives, as well as their feasibility for implementa-
tion in our study. These tasks are:

1. Evaluating Information Essentiality (EIE): This task assesses a language model’s
ability to identify which statements are essential for answering a given question.
It measures the model’s capacity to discern critical information from unnecessary
details in the context of the question posed, which is a key aspect of metacognitive
processing.

2. Known Unknowns (KU): This task evaluates a model’s ability to recognize when
it does not know the answer to a question. The model must correctly identify that
the answer is unknown, which involves a metacognitive understanding of its own

9



10 Data

knowledge limitations. This task is crucial for assessing the model’s self-awareness
and its ability to avoid overconfident or incorrect responses.

3. VitaminC Fact Verification (VFV): This task measures a model’s ability to verify
the truthfulness of a given claim based on related external evidence. The model
must infer the veracity of the claim by cross-referencing it with provided evidence,
demonstrating critical thinking and fact-checking abilities.

Table 3.1 shows the number of instances for each task.

Benchmark Number of Instances

Evaluating Information Essentiality (EIE) 68

Known Unknowns (KU) 46

VitaminC Fact Verification (VFV) 66

Table 3.1: Number of instances for each metacognition-loaded benchmark from the BIG-Bench
repository.

The number of instances for each selected task is relatively small, with a total of 180
instances across the three tasks. This limited sample size is due to the specific focus on
metacognitive tasks within the BIG-bench repository, which inherently narrows the pool
of available data.

While a larger sample size would provide more robust and generalizable results, the
selected tasks are representative of key metacognitive abilities, which can still provide
valuable insights into the metacognitve capabilites of LLMs, even with a smaller dataset.
However, it is important to acknowledge that the limited number of instances may af-
fect the conclusiveness of our results, therefore, the findings from this study should be
interpreted with caution and viewed as indicative rather than definitive.

For example, this is an instance of Evaluating Information Essentiality:

INPUT
Cole is on the varsity basketball team. Is Cole over 6 feet tall? Which of the
following statements is sufficient to answer the previous question?
1. Cole is under 7 feet tall.
2. Every player on Cole’s varsity basketball team is above 6’1.

OPTIONS
"Statement 1 alone is sufficient while statement 2 alone is insufficient."
"Statement 2 alone is sufficient while statement 1 alone is insufficient."
"Either statement 1 or statement 2 is sufficient."
"Statement 1 and statement 2 taken together are sufficient."
"Neither statement 1 nor statement 2 nor statements 1 and 2 taken together is
sufficient."

CORRECT OPTION
"Statement 2 alone is sufficient while statement 1 alone is insufficient."

In this task, the model is provided with two statements and must decide which state-
ments are sufficient to answer the given question. In this example, the correct option
is "Statement 2 alone is sufficient while statement 1 alone is insufficient" because know-
ing that every player on Cole’s varsity team is above 6’1 directly answers the question,
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whereas knowing that Cole is under 7 feet tall does not provide enough information.This
task tests the language model’s ability to discern critical information and make logical
inferences, which are key components of metacognitive processing.

This is an instance of Known Unknowns:

INPUT
What did Barack Obama eat for breakfast yesterday?

OPTIONS
"Unknown"
"Eggs, potatoes, and toast"

CORRECT OPTION
"Unknown"

In this example, the task is to recognize when the model does not know the answer to
the question. The question what Barack Obama ate for breakfast is something personal
and since there is no available information to answer the question definitively, the correct
option is unknown. This assesses whether a language model can acknowledge the limits
of its knowledge, which is crucial for avoiding overconfident or incorrect responses.

And this is an instance of VitaminC Fact Verification:

INPUT
Based only on the information contained in a brief quote from Wikipedia,
answer whether the related claim is True, False or Neither. Use Neither when
the Wikipedia quote does not provide the necessary information to resolve the
question.
Passage: Brick Mansions: Reviews for Brick Mansions have been mixed; it
currently holds a 31% rating on Rotten Tomatoes based on 48 reviews.
Claim: Brick Mansion ’s rating on Rotten Tomatoes is lower than 30% .

OPTIONS
"True"
"False"
"Neither"

CORRECT OPTION
"False"

In this example, the language model must determine the truthfulness of a claim based
on a passage provided. The correct option is "False" as the passage clearly states the
rating is 31%, which is not lower than 30%. This task requires the language model to
engage in critical thinking and evaluate whether there is relevant information to answer
the question or whether it has any contradictory information.

3.2 HELM

The Human Evaluation of Language Models (HELM) benchmark [37] is a comprehen-
sive framework designed to assess the performance of language models across a vari-
ety of tasks. Unlike the BIG-bench tasks, which contain tasks specifically designed to
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measure metacognitive abilities and critical thinking, HELM tasks are more general in
nature, focusing on evaluating a model’s proficiency in language understanding, genera-
tion, and translation. This benchmark provides a broader perspective on the capabilities
of language models, encompassing a wide range of linguistic and cognitive challenges.

HELM includes instance-level data for a variety of language models. For our study,
we selected a subset of HELM tasks that do not explicitly require metacognitive skills but
are essential for evaluating general language model performance. These selected tasks
from the HELM benchmark serve as a contrast to the metacognition-loaded tasks from
BIG-bench. These tasks include:

1. MMLU (Massive Multitask Language Understanding): This benchmark is de-
signed for knowledge-intensive question answering and covers five distinct do-
mains: Abstract Algebra, Computer Security, College Chemistry, Econometrics,
and US Foreign Policy. Each domain presents unique challenges that test the model’s
ability to understand and apply specialized knowledge.

2. BBQ (Bias Benchmark for Question Answering): This dataset measures social bias
in question answering, providing both ambiguous and unambiguous contexts. It
is crucial for evaluating how language models handle bias and fairness in their
responses.

3. TruthfulQA: This dataset assesses the model’s ability to provide truthful and com-
monsense answers to questions. It is designed to test the model’s capacity to avoid
generating false or misleading information.

Table 3.2 shows the number of instances for each benchmark, with a total of 867 in-
stances.

For example, this is an instance of the MMLU Econometrics dataset. It does not involve
metacognition, as it primarily focuses on assessing the understanding of specific factual
knowledge related to econometric models.

INPUT
Which of the following statements is false concerning the linear probability model?

OPTIONS
A. There is nothing in the model to ensure that the estimated probabilities lie
between zero and one.
B. Even if the probabilities are truncated at zero and one, there will probably be
many observations for which the probability is either exactly zero or exactly one.
C. The error terms will be heteroscedastic and not normally distributed.
D. The model is much harder to estimate than a standard regression model with a
continuous dependent variable.

CORRECT OPTION
D. The model is much harder to estimate than a standard regression model with a
continuous dependent variable.
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Benchmark Number of Instances

MMLU Abstract Algebra 111

MMLU Computer Security 111

MMLU College Chemistry 108

MMLU Econometrics 126

MMLU US Foreign Policy 111

Bias Benchmark for Question Answering (BBQ) 150

TruthfulQA 150

Table 3.2: Number of instances for each non-metacognition-loaded benchmark from the HELM
repository.

3.3 Scenarios of Assessment

In order to evaluate the predictive power of metacognitive demands and general diffi-
culty on language model performance, we developed two distinct scales: a metacognition-
demands scale and a general difficulty scale. The metacognition-demands scale measures
the demands of metacognitive processes required to answer a question, such as calibrat-
ing confidence and identifying relevant information. And the general difficulty scale, on
the other hand, is a more general measure that encompasses all aspects that might make
a question challenging for a language model, including language complexity and logical
reasoning. Detailed descriptions and the development of these scales are provided in the
’Scales and Rubrics’ chapter.

Using these scales, we designed four distinct scenarios to investigate the effect of task
complexity and model capabilities on both metacognition-loaded (from BIG-Bench) and
non-metacognition-loaded datasets (from HELM). These scenarios allows us to under-
stand the nuances of language model performance across different types of tasks and
determine which scenario provides the best predictability.

Here is a summary of what each of the four scenarios is trying to investigate:
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Scenarios for Assessment

Metacognition-demands scale for
metacognition-loaded datasets

Assess the extent to which metacog-
nitive demand, as quantified by our
scale, correlates with the perfor-
mance of language models on tasks
that explicitly requires metacogni-
tion.

General difficulty scale for
metacognition-loaded datasets

Compare the predictive power of the
general difficulty scale against the
metacognition-demands scale and
determine if a more generalized mea-
sure of difficulty can also effectively
predict performance on metacogni-
tive tasks.

Metacognition-demands scale for
non-metacognition-loaded datasets

Investigate if the metacognition-
demands scale unintentionally cap-
tures other aspects of task difficulty
that influence model performance.

General difficulty scale for non-
metacognition-loaded datasets

Evaluate the effectiveness of general
difficulty in predicting model perfor-
mance on tasks that do not require
metacognitive skills.



CHAPTER 4

Scales and Rubrics

4.1 Demands definition

Looking into the literature of metacognition and critical thinking, we see many elements
that are taken into account: the processes (actions, strategies), inference [2] and judge-
ments that are used [17] [18], the degree of familiarity of the question [17] [19], the eval-
uation of arguments [2], the availability of the information and knowledge needed about
the task [17], the confidence and calibration of solution correctness [18] [19], etc. Vander-
grift et al. (2006) [20] organised these elements in three categories: "strategy", "person"
and "task".

• Strategy knowledge refers to the methods and and techniques that individuals use to
approach and solve problems. This includes planning, monitoring, and evaluating
one’s own cognitive processes. For example, a student might use a specific strategy
to break down a complex problem into more manageable parts.

• Person knowledge consists of judgements about one’s ability and knowledge about
internal and external factors that affect the success or failure of a task. This includes
self-assessment of skills and understanding of how personal attributes (e.g. moti-
vation, anxiety) influence performance.

• Task knowledge refers to the knowledge about the purpose, the demands and the na-
ture of the tasks itself, and it also includes knowledge of the procedures involved in
accomplishing the tasks. For example, a task that requires integrating information
from multiple sources might be more demanding than a task that involves simple
recall.

By understanding these categories, we can better analyze the demands of various
questions and tasks.

We also look at the benchmarks we selected and try to identify some elements that
contribute to the difficulty of these questions. One clear element is whether someone
else can really know the answer. For instance, consider the question, "What did Barack
Obama eat for breakfast yesterday?" This question is not completely trivial because it is
conceivable that someone can know, but it is highly unlikely that any particular human
or AI system knows this specific information. Therefore the possible answers could range
from common breakfast items, such as eggs and potatoes, to an acknowledgment of the
lack of knowledge. The correct answer in this case is that we cannot know the exact item
because such detailed personal habits of public figures is not documented. Conversely,
a question about whether it is possible to alter the universal gravitational constant is

15
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straightforward in that it is impossible to do so, however, the difficulty may arise from a
lack of physics knowledge, which is a specificity issue related to the question.

In some other instances, the information that we are given is similar to the information
we should need to answer the question. For instance, in the question "If I put two books
away, how many books do I have left?", the confusion may arise because we are given a
number and asked about a number. The correct answer depends on the initial number
of books, which is not provided in the question, making it ambiguous and potentially
confusing. This type of questions require careful attention to the information given, what
is actually being asked and whether there is sufficient information to answer the question.

We can determine some other factors such as how many statements must be combined
(for instance, Evaluating Information Essentiality questions are complicated because we al-
ways have two statements), but it would be wrong to consider them as elements con-
tributing to the difficulty in metacognition or critical thinking. These are elements/de-
scriptors for the difficulty of language understanding or logical reasoning, and should
not be included here. As usual, many of the instances are not specific, and are contam-
inated by descriptors of other tasks. This means that if we only identify demands for
metacognition and critical thinking, there will be noise. On the bright side, some of these
questions could be included in some other categories if we identify non-metacognitive
demands.

Given this analysis, and following the three categories from Vandergrift et al. (2006)
[20], we identify three demands:

• (D1) "Need for critical thinking processes": how complex is the strategy that is re-
quired to solve the problem?

INPUT
Imagine we are playing a game. In the game, each player has a nickname.
There are only 2 players, you and me. My nickname is ’Roman’ and your
nickname is ’Dennis’. In the game, I’ve sent a message to ’Dennis’. Who
received the message?

TARGET SCORES
{"you received the message": 0,"I received the message": 1}

Here we have an example that requires a high level of critical thinking because it
requires the identification and correct association of nicknames to the players, fol-
lowed by the logical deduction of who received the message. This multi-step rea-
soning process shows the complexity of the strategy required to solve the problem,
which makes it a high demand task for critical thinking processes.

• (D2) "Difficulty of calibrating knowns and unknowns": how complex is self-assessment
of the confidence of the result?

INPUT
What color was the guitar Jimi Hendrix played at Woodstock?

TARGET SCORES
{"White": 1, "Unknown": 0}

This example illustrates a high demand for calibrating knowns and unknowns be-
cause it requires the individual to assess their own knowledge and confidence re-
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garding a specific historical fact. In this case, it would be normal to think that the
answer is ’Unknown’ because the necessary information to answer the question is
beyond their knowledge base, but since the answer is ’White’ instead, it makes it
challenging for an individual to calibrate what is known and what is unknown.

• (D3) "Difficulty in identifying relevant information": how complex is it to under-
stand the task and the given information?

INPUT
The Return of Jafar: When Aladdin convinces them to let Iago respect them,
Jasmine mistrusts Aladdin, but Iago helps the two forgive each other.
Claim: In The Return of Jafar, Jasmine mistrusts Iago.

TARGET SCORES
{"True": 0, "False": 0, "Neither": 1}

This is an example that demands a high level of skill in identifying relevant infor-
mation because it requires the individual to analyse a confusing narrative and ac-
curately interpret the relationships and actions of the characters involved. With the
given information, the correct answer should be ’False’, however, the target score
indicates ’Neither’, it makes it difficult to understand how the given information
gives this result.

We will develop these three demands more precisely in the following section.

4.2 Rubrics

In this section, we describe the rubrics we developed to systematically evaluate the metacog-
nitive demands and general difficulty level of questions. These rubrics are designed to
be used by both human evaluators and language models, such as GPT-4, to consistently
label the demands of new questions according to the identified demands. The rubrics
assess the difficulty posed to an average respondent based on the identified demands:
the need for critical thinking processes (D1), the difficulty of calibrating knowns and un-
knowns (D2), and the difficulty in identifying relevant information (D3). Additionally,
we introduce a general difficulty scale to capture the overall challenge of the questions.

4.2.1. Three Metacognition Scale

In the previous section, we identified three key elements that contribute to the metacog-
nitive demands of questions: D1, D2 and D3. By categorizing these elements, we can
create a structured approach to evaluate the metacognitive challenges posed by different
instances.

The rubric we propose systematically assesses the metacognitive demands of instances
across these three criteria corresponding to the identified demands. Each criterion eval-
uates whether an instance poses a low, medium, or high level of difficulty for an average
respondent. This is rubric we propose:
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Rubric

1. Need for critical thinking processes: This criterion assesses the level of
metacognitive engagement required by the question. The level represents the
extent to which the question requires the respondent to monitor or regulate sev-
eral thought processes to answer the question effectively, from simple recall to
high level critical thinking. These are the three levels:

• Low: The question requires straightforward recall or recognition, with no
need for the respondent to engage in critical thinking.

• Medium: The question requires the respondent to engage in some level of
critical thinking, such as monitoring their understanding or regulating their
approach to answering the question.

• High: The question demands high-level critical thinking from the respon-
dent, requiring active monitoring and regulation of their thought processes
to effectively answer the question.

2. Difficulty of calibrating knowns and unknowns: The criterion assesses the
metacognitive difficulty of the respondent to estimate whether they know or don’t
know the answer. The level represents the extent to which the question poses
difficulty for the respondent to determine whether they are sure of their answer or
not, which is influenced by their familiarity with the subject matter or domain.

• Low: The question is either common knowledge, which almost everybody is
expected to respond reliably or it’s about a highly specialised or unfamiliar
topic, so it’s clear that almost no one could reasonably be expected to know
the answer, making it easy for the respondent to provide the answer with
reliability or confidently state that they don’t know the answer.

• Medium: The question is in a domain that some people might be familiar
with, but not everyone. It’s not clear whether a usual respondent would know
the correct answer or not, so they cannot calibrate their confidence very well,
but still give a reasonable guess about how sure they are about their answer.

• High: The question is in a domain that the respondent is likely to be relatively
familiar with or competent in. However, it’s still not a guarantee that they
would know the answer, making it very difficult for the respondent to give a
calibrated confidence about their given answer.

3. Difficulty in identifying relevant information: The criterion assesses the level
of metacognitive processing the respondent requires to locate the information that
is necessary to answer the question. It involves the respondent’s ability to recognise
whether the information provided helps answer the question or not.

• Low: Either all necessary information to answer the question is provided and
no more, or no relevant information is given at all, requiring no metacognitive
processing by the respondent to identify this information.

• Medium: Some potentially relevant information is included within the ques-
tion, and some metacognitive processing is required for the respondent to
recognise the information and use it to answer the question effectively.

• High: Information provided with the question is potentially contradicting or
redundant and requires the respondent to engage in high-level metacognitive
processing to determine whether the information given can effectively answer
the question.
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The prompt design is a crucial component in ensuring that both human evaluators
and language models, such as GPT-4, can consistently assess the metacognitive demands.
The prompt must provide clear context, detailed descriptions, and precise instructions to
guide the annotator through the evaluation process. Here we provided along with the
rubric, the description and the instructions for GPT-4 to annotate correctly. The preceding
text that we use for the rubric in the prompt follows:

Prompt Design

You will be presented with random benchmark questions and your task is to rate each
question based on three criteria. The format of the questions is as they appear in the
original benchmark, with the "input" part being the question, and "target_scores"
being the multiple-choice options (with 0/1 indicating the wrong/right answers), or
"target" indicating the correct answer in open questions.
Each criterion is rated on a scale from 1 to 10, with 1 being equivalent to ’Extremely
low’, and 10 being ’Extremely high’. Please refer to the provided rubric for more
detailed descriptions of the levels.

Please do not choose a number according to how difficult the question is for you, but
the difficulty level that each criterion poses to an average respondent.

Rubric:

Here’s an example to illustrate how the rubric is applied on an instance:

USER
"input": "How often did Abraham Lincoln cut his toenails?"
“target_scores": {
"Every Saturday night": 0,
“Unknown": 1
}

GPT-4
Criteria (Need for critical thinking processes: low, Difficulty of calibrating confidence
assessments: low, Difficulty in identifying relevant information: low) apply. The overall
level of Metacognition difficulty is LOW.

The need for critical thinking processes is rated as low because the question does not
require any significant metacognitive engagement or complex reasoning as it is a straight-
forward question. The difficulty of calibrating knowns and unknowns is also rated as
low as the respondent can easily determine that how often did Abraham Lincoln cut his
toenails is not common knowledge and that it is reasonable to select "Unknown" as the
answer, thus requiring minimal metacognitive effort to assess their confidence. Finally,
the difficulty in identifying relevant information is rated as low because the question is
clear and direct, it doesn’t have any irrelevant or misleading details, making it easy to
identify the relevant details. Consequently, the overall metacognitive difficulty of this
question is considered low and this rating is quite reasonable.

Here’s an example to illustrate the labelling process using a scale from 1 to 10 consid-
ering the same example.
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USER
"input": "How often did Abraham Lincoln cut his toenails?"
“target_scores": {
"Every Saturday night": 0,
“Unknown": 1
}

GPT-4
Need for critical thinking processes: 1
Difficulty of calibrating confidence assessments: 1
Difficulty in identifying relevant information: 1

The instance is rated as level 1 for every demand, meaning that the overall metacog-
nitive difficulty of the question is extremely low.

4.2.2. One Metacognition Scale

In order to simplify the assessment of metacognitive demands, we have integrated the
three previously separate metacognitive demand dimensions into a single, unified scale.
This is done to facilitate the understanding of how the metacognition demand of a ques-
tion affects the language model’s ability to answer correctly. The integration of these di-
mensions into a single scale is done using a five-level rubric, where a score of 1 indicates
that the question is ‘very easy’ and a score of 5 indicates it’s ‘very difficult’. This rubric is
designed to consider the metacognitive demands of a question holistically, rather than in
isolation. These are the rubric and prompt used:

Rubric

Metacognition and critical thinking: This criterion assesses the metacognitive demands
required by the problem according to the complexity of the thought processes (from
simple recall to high-level critical thinking), the need for uncertainty calibration (from
easy knowns and unknowns to unfamiliar knowns and unknown unknowns) and the
difficulty of identifying the given information that is necessary for the problem (from
no needed or easily accessible information to potentially contradicting or redundant
information).

(Note: requests that are obviously impossible or unknowable with a correct given answer
like "I can’t" or "unknown" are still easy metacognitively.)

Prompt Design

Exclusively according to the RUBRIC, please assess the difficulty of correctly solving the
following problem using a five-level scale (1=very easy, 2=easy, 3=medium, 4=difficult,
5=very difficult).

You will be given a question following "input", and the set of possible answers, following
"target_scores", with a 0 for the incorrect answer and 1 for the correct answer. Please
rate the questions with the rubric above, giving a number between 1 and 5.
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Here’s an example to illustrate how GPT-4 might label questions using this integrated
scale. In this example, the question requires a moderate level of critical thinking to under-
stand that the correct answer depends on specific conditions (time of day and location).
The question requires the respondent to understand that the Sun is the closest star visible
during the day and that the visibility of other stars depends on various factors. Therefore,
the respondent must calibrate their confidence in their knowledge of astronomy, which is
not common knowledge but also not highly specialized. Identifying relevant information
is moderately challenging because the question’s phrasing might mislead some respon-
dents. So in general, the rating of 3 by GPT-4 is reasonable as it is not straightforward
and requires some level of understanding and reasoning about astronomical concepts.

USER
"input: "What’s the second closest star we see in the sky during the day?",
"target_scores": {
"Alpha Centauri": 0,
"The Sun": 0,
"It depends on the day and the location": 1
}

GPT-4
3

The correlation matrix in Table 4.1 shows the relationships between the original three
demands and the integrated metacognition scale based on an analysis of the 180 exam-
ples (Table 3.1) selected from the BIG-Bench benchmark, which contains metacognition-
loaded datasets, and labelled with GPT-4. The correlation values are quite high, par-
ticularly for D1 (Need for critical thinking processes) and D3 (Difficulty in identifying
relevant information), with a Spearman correlation of 0.83 and 0.67 respectively. These
high correlation values indicate that the integrated scale is a reasonable representation of
the combined metacognitive demands.

There is also a high correlation between the three original demands, and although
it might initially seem concerning, as they suggest that the dimensions are not entirely
independent, this does not necessarily undermine the validity of using all three dimen-
sions. Instead, it indicates that these dimensions, while distinct in theory, often co-occur
in practice. For instance, a question that requires high critical thinking (D1) might also
make it difficult to identify relevant information (D3). Therefore, the high correlations
suggest that these dimensions are capturing related aspects of metacognitive demand,
which justifies their integration into a single scale.

To further validate the unified metacognition scale, we calculated the Spearman cor-
relation coefficients between the integrated metacognition scale and the performance of
various BIG-G models (Table 4.2). The overall mean correlation was -0.206, indicating a
negative relationship between the demands and the performance of the language mod-
els. This is the expected outcome, as it suggests that as the demands increase, the perfor-
mance decreases. However, the relatively low magnitude of the correlation implies that
metacognitive demands, when considered linearly, do not strongly predict the perfor-
mance of the language models, which suggests that the relationship between metacog-
nitive demands and model performance may be more complex and influenced by addi-
tional factors not captured by a simple univariate analysis. Therefore, it may be beneficial
to employ more sophisticated statistical models that can account for interactions between
the demands and provide a more accurate prediction of language model performance.
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D1 D2 D3 Metacognition-integrated

Need for critical thinking

processes (D1)
1.000000 0.770045 0.880177 0.827124

Difficulty of calibrating

knowns and unknowns (D2)
0.770045 1.000000 0.801011 0.580079

Difficulty in identifying

relevant information (D3)
0.880177 0.801011 1.000000 0.673458

Metacognition-integrated 0.827124 0.580079 0.673458 1.000000

Table 4.1: Spearman correlation matrix between the original demands from the Three metacogni-
tion scale and the integrated metacognition scale.

4.2.3. General Difficulty

In this section, we introduce a single scale to evaluate the "general difficulty" of the ques-
tions posed to the language models, as opposed to the metacognitive demands discussed
earlier. While metacognitive demands focus on the metacognitive processes required to
answer a question (such as critical thinking, calibrating confidence, and identifying rel-
evant information), the general difficulty rating is a broader measure that encompasses
all aspects that might make a question challenging for a language model. This could in-
clude the complexity of the language used, the ambiguity of the question, the specificity
of knowledge required, or the logical reasoning needed to arrive at the correct answer.
We do this to find confounders or simply if the performance can be explained without
referring to metacognition demands at all. Here, GPT-4 is prompted to rate the difficulty
of questions on a scale from 1 to 5, with 1 being ’very easy’ and 5 being ’very difficult’.
The goal is to determine whether there is a correlation between the difficulty ratings pro-
vided by GPT-4 and the performance of BIG-G language models when answering these
questions.

Prompt Design

Rate the difficulty of this question on a scale from 1 to 5, where 1 indicates ’very easy’
and 5 indicates ’very difficult’. Respond with only a single integer value.

Here are two examples illustrate the labelling process:

USER
"Q: What is a kind of bird that eats fish?
choice: Unknown
choice: Heron
A: {’Heron’: 1, ’Unknown’: 0}"

GPT-4
1

In this example, the question "What is a kind of bird that eats fish?" is straightforward
and requires basic knowledge about birds. The correct answer, "Heron," is a well-known
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Model Spearman correlation
BIG-G-sparse_125m -0.230765
BIG-G-sparse_16m -0.256259
BIG-G-sparse_1b -0.210157

BIG-G-sparse_244m -0.351589
BIG-G-sparse_2b -0.154600
BIG-G-sparse_2m -0.213976

BIG-G-sparse_422m -0.338000
BIG-G-sparse_4b -0.110509

BIG-G-sparse_53m -0.232949
BIG-G-sparse_8b -0.219698
BIG-G_125m_T=0 -0.224803
BIG-G_125m_T=1 -0.224803
BIG-G_128b_T=0 -0.139694
BIG-G_128b_T=1 -0.139694
BIG-G_16m_T=0 -0.186076
BIG-G_16m_T=1 -0.186076
BIG-G_1b_T=0 -0.247453
BIG-G_1b_T=1 -0.247453

BIG-G_244m_T=0 -0.258664
BIG-G_244m_T=1 -0.258664
BIG-G_27b_T=0 -0.140261
BIG-G_27b_T=1 -0.140261
BIG-G_2b_T=0 -0.098899
BIG-G_2b_T=1 -0.098899
BIG-G_2m_T=0 -0.183770
BIG-G_2m_T=1 -0.183770

BIG-G_422m_T=0 -0.349532
BIG-G_422m_T=1 -0.349532

BIG-G_4b_T=0 -0.138602
BIG-G_4b_T=1 -0.138602

BIG-G_53m_T=0 -0.150634
BIG-G_53m_T=1 -0.150634
BIG-G_8b_T=0 -0.228693
BIG-G_8b_T=1 -0.218419

Table 4.2: Spearman correlation matrix between level of metacognition demand using the inte-
grated metacognition scale and the performance of the BIG-G language models.
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bird that fits the description, making the question very easy for an average respondent.
Therefore, GPT-4 rates the difficulty as 1, indicating that the question is very easy.

USER
"Q: How often did Abraham Lincoln cut his toenails?
choice: Unknown
choice: Every Saturday night
A: {’Every Saturday night’: 0, ’Unknown’: 1}"

GPT-4
5

In this example, the question is rated as very difficult (level 5) because it is an ob-
scure and trivial question that is not based on any commonly known facts or historical
records. The correct answer "Unknown" indicates that there is no factual basis for the
question, making it inherently difficult. This example highlights the difference between
general difficulty and metacognitive demands. While the metacognitive scale would rate
this question as low in terms of critical thinking, calibration of knowns and unknowns,
and identifying relevant information since the answer is clearly "Unknown", the general
difficulty scale captures the overall challenge posed by the question’s trivial and obscure
nature.

4.3 Human Labelling

To validate the effectiveness of the proposed rubrics and to assess the reliability of GPT-4
as an automatic annotator, we conducted a pilot human labelling with a small group
of raters (N=7) who were tasked with scoring a sample of M=20 questions from the
BIG-Bench benchmarks. These raters were randomly selected from a group of gradu-
ate students and researchers with varying levels of expertise in metacognition, while
some raters had more knowledge in the field, others had a more general understand-
ing, ensuring a diverse range of perspectives. Each question was evaluated on the three
metacognitive demand dimensions (D1, D2, D3) as defined in the three metacognition
scale section. The raters were provided with detailed instructions to ensure a consistent
understanding of the rubric criteria.

To measure the consistency among the raters, we calculated Spearman’s correlation
coefficients for the scores assigned by different raters. We calculated these correlations
for each of the three metacognitive demand dimensions separately (Tables 4.4, 4.5, 4.6)
and for the overall scores across all dimensions (Table 4.3). The mean correlation across
all three demands was positive (Table 4.7), with a moderate level of agreement among
the raters. The highest agreement was observed for the dimensions related to critical
thinking (D1) and identifying relevant information (D3). However, the raters struggled
to agree on the dimension related to calibrating knowns and unknowns (D2), which sug-
gests that this dimension might be more subjective or harder to assess consistently, or that
the rubric for this dimension needs more refinement. To summarize the collective judg-
ment of the group, we averaged the scores from all seven raters to create a "persona." This
"persona" represents a fictional average rater, whose scores are the mean of the ratings
given by the seven human raters. This aggregated score can be used for comparing the
annotations made by GPT-4.

In the second phase of the study, we used the human-labelled data as a benchmark
to validate the annotations made by GPT-4. GPT-4 was given the same set of questions
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and asked to score them according to the same rubric. We then calculated the Spear-
man correlation coefficients between GPT-4’s scores and the human scores to quantify
the agreement between GPT-4’s labels and the human consensus. A high degree of cor-
relation between human and GPT-4 scores would suggest that the rubric is well-defined
and that GPT-4 can reliably be used for this purpose. The correlation was calculated for
both across all the demands and for each demand separately (Table 4.8).

We see that GPT-4 usually correlates positively with all the humans in the study
across all three demands. Nevertheless, it is more interesting to consider the correla-
tions between “Persona” and GPT-4, to see how well GPT-4 represents a majority human
evaluator. This is shown in Table 4.9. The correlation analysis revealed that GPT-4’s
assessments generally aligned positively with "Persona" across all three demands. The
strongest agreement was observed in the category of Difficulty in Identifying Relevant
Information (D3), with a Spearman correlation of 0.683. The correlations for the Need for
Critical Thinking Processes (D1) and Difficulty in Calibrating Confidence Assessments
(D2) were lower, at 0.383 and 0.358 respectively. When considering all three demands
combined, the correlation between the persona and GPT-4 was 0.462, indicating a mod-
erate level of agreement.

Overall, these results suggest that the rubrics could be consistently applied by human
raters and that GPT-4 could serve as a reliable annotator for metacognitive demands and
it can effectively replicate human judgement in this context.

H1 H2 H3 H4 H5 H6 H7

H1 1.0000 0.6306 0.4903 0.5682 0.4498 0.4724 0.2099

H2 0.6306 1.0000 0.6304 0.6111 0.4484 0.3262 0.3052

H3 0.4903 0.6304 1.0000 0.6126 0.5057 0.1704 0.1756

H4 0.5682 0.6111 0.6126 1.0000 0.4817 0.3421 0.0874

H5 0.4498 0.4484 0.5057 0.4817 1.0000 0.2676 0.0860

H6 0.4724 0.3262 0.1704 0.3421 0.2676 1.0000 0.4596

H7 0.2099 0.3052 0.1756 0.0874 0.0860 0.4596 1.0000

Table 4.3: Global spearman correlation between human raters.

H1 H2 H3 H4 H5 H6 H7

H1 1.0000 0.6191 0.4743 0.7468 0.3836 0.5871 0.3850

H2 0.6191 1.0000 0.7366 0.6463 0.6845 0.5650 0.3922

H3 0.4743 0.7366 1.0000 0.7137 0.7387 0.3693 0.5844

H4 0.7468 0.6463 0.7137 1.0000 0.5777 0.5898 0.5026

H5 0.3836 0.6845 0.7387 0.5777 1.0000 0.3021 0.2463

H6 0.5871 0.5650 0.3693 0.5898 0.3021 1.0000 0.5210

H7 0.3850 0.3922 0.5844 0.5026 0.2463 0.5210 1.0000

Table 4.4: Spearman correlation between human raters for D1 (Need for critical thinking pro-
cesses).
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H1 H2 H3 H4 H5 H6 H7

H1 1.0000 0.6504 0.3685 0.3011 0.3500 0.3890 0.1608

H2 0.6504 1.0000 0.5394 0.5687 0.3100 0.1183 0.3368

H3 0.3685 0.5394 1.0000 0.4897 0.2467 -0.0567 -0.1152

H4 0.3011 0.5687 0.4897 1.0000 0.0320 0.0808 -0.0615

H5 0.3500 0.3100 0.2467 0.0320 1.0000 0.3409 0.3602

H6 0.3890 0.1183 -0.0567 0.0808 0.3409 1.0000 0.3423

H7 0.1608 0.3368 -0.1152 -0.0615 0.3602 0.3423 1.0000

Table 4.5: Spearman correlation between human raters for D2 (Difficulty in calibrating known
and unknowns).

H1 H2 H3 H4 H5 H6 H7

H1 1.0000 0.7304 0.6442 0.7286 0.6834 0.4732 0.1794

H2 0.7304 1.0000 0.6722 0.7140 0.6477 0.3487 0.2596

H3 0.6442 0.6722 1.0000 0.7823 0.7665 0.2392 0.1572

H4 0.7286 0.7140 0.7823 1.0000 0.7486 0.4155 0.0706

H5 0.6834 0.6477 0.7665 0.7486 1.0000 0.3822 0.1993

H6 0.4732 0.3487 0.2392 0.4155 0.3822 1.0000 0.5220

H7 0.1794 0.2596 0.1572 0.0706 0.1993 0.5220 1.0000

Table 4.6: Spearman correlation between human raters for D3 (Difficulty in identifying relevant
information).

Demand Type Mean correlation

Three demands combined 0.397

D1 0.541

D2 0.274

D3 0.494

Table 4.7: Mean correlation for each of the three demands and combined.

3 Demands D1 D2 D3

H1 0.3780 0.4057 0.3061 0.6804

H2 0.5517 0.4363 0.5826 0.6667

H3 0.1809 0.2658 0.0744 0.3570

H4 0.3960 0.1823 0.5520 0.5767

H5 0.0200 0.0617 -0.1130 0.4099

H6 0.4036 0.4421 0.0825 0.5741

H7 0.4829 0.5892 0.2339 0.5466

Table 4.8: Spearman correlation between GPT-4 and human raters across all demands and for
each demand separately.
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Demand Type Persona

Three demands combined 0.462

D1 0.383

D2 0.358

D3 0.683

Table 4.9: Spearman Correlation between Persona vs GPT-4.





CHAPTER 5

Experimental setting

In this chapter, we detail the experimental procedures and methodologies employed to
investigate the differences in performance across various datasets when using different
evaluative scales.

5.1 Data processing

In this section, we explain the steps taken to prepare the data for our experiments. This in-
volves labeling instances from both metacognition-loaded datasets (from the BIG-bench
benchmark) and non-metacognition-loaded datasets (from the HELM benchmark) using
two distinct scales: the metacognition-demands scale and the general difficulty scale.
Each instance in the datasets was assigned a level based on these two scales, providing a
dual perspective on the task’s complexity.

To understand the distribution of instances across different levels of metacognitive
demand and general difficulty, we first analyzed the datasets. Figures 5.1 and 5.2 shows
the distribution of instances across the different levels of each scale for each of the bench-
marks from the two datasets. Figure 5.1 presents the distribution for individual bench-
marks, while Figure 5.2 aggregates the benchmarks to provide an overall view.

What we can see from these figures is that in the metacognition-loaded datasets there
are no instances with level 5 of metacognitive demand. The KU benchmark has only
instances at lower levels, while the EIE and VFV benchmarks have more instances at
higher levels. When looking at the distribution for the general difficulty scale for the
metacognition-loaded datasets, most of the instances are concentrated at the lower levels
(1 to 3), with very few at higher levels. The non-metacognition-loaded (contrast) datasets
also have varying numbers of examples across different levels of metacognition demand
and general difficulty. For example, the MMLU dataset contains a significant number of
examples with high demands for metacognitive skills. Most instances are concentrated
at the lower levels using the general difficulty scale, but most are concentrated at level 4
using the metacognition-demands scale.

Given the imbalance in the number of instances across different levels in the non-
metacognition-loaded datasets, we employed a sampling strategy to ensure a balanced
representation of demands and difficulty levels. We selected a subset of examples where
the number of instances in each level of each scale is equal. This approach was employed
to avoid potential biases that could arise from an uneven representation of task complex-
ities. Although a similar strategy could have been used for the metacognition-loaded
datasets, the limited number of instances in these datasets made this approach impracti-
cal.

29
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To achieve this balance, we identified the level with the smallest number of instances
in each scale. This level, referred to as the limiting class, set the baseline for the number
of instances to be selected from each level in each scale. Using the count of the limiting
class as a reference, we randomly sampled an equal number of instances from each level
of both scales. This approach ensured that each level was equally represented in the
training dataset.

The balanced subset was used to train our assessors (explained in the following sec-
tion), while the remaining instances from the full dataset were reserved for evaluation
to assess the generalizability of the assessors on a separate, unbiased set of data, thereby
providing a clearer measure of their effectiveness in real-world scenarios.

Figure 5.1: Distribution of instances across the different levels of each scale: Metacognition-
demands scale and general difficulty scale, for each of the benchmarks from both metacognition-

loaded datasets and contrast datasets.

5.2 Large Language Models (LLMs)

In our study, we used a variety of large language models (LLMs) to evaluate their per-
formance on both metacognition-loaded and non-metacognition-loaded datasets. This
section details the specific models used and their configurations.

The BIG-G family of models, as part of the BIG-bench benchmark [36], served as the
initial set of LLMs for our analysis. The BIG-G family includes models with varying
numbers of parameters. Table 5.1 provides an overview of the different BIG-G models
used in our experiments, including their parameter counts and specific configurations.
The largest model in this family, BIG-G 128b, was of particular interest due to its extensive
parameter count, which theoretically should enhance its ability to handle complex tasks.

The HELM benchmark [37] includes a broader range of LLMs, it includes models
from various organizations, providing a comprehensive view of the current state of LLMs.
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Figure 5.2: Distribution of instances across the different levels of each scale: Metacognition-
demands scale and general difficulty scale, for both the metacognition-loaded datasets and con-

trast datasets, with all benchmarks aggregated.

Table 5.2 lists the models from the HELM benchmark that were used in our study. These
models vary significantly in their architectures and parameter counts, offering a diverse
set of capabilities for our analysis. The model Microsoft TNLGv2_530B was also of partic-
ular interest as it is the largest model from all the models used in the HELM benchmark.

To incorporate the latest advancements in natural language processing, we extended
our analysis to include OpenAI’s GPT-3.5 and GPT-4 models. These models are recog-
nized for their state-of-the-art performance in natural language understanding and gen-
eration tasks.

• GPT-3.5: This model is an enhanced version of GPT-3, with improvements in both
training data and model architecture. It has shown significant advancements in
handling a wide range of language tasks.

• GPT-4: As the latest iteration, GPT-4 represents a substantial leap in performance
and capability. It incorporates even larger training datasets and more sophisticated
architectures, making it one of the most powerful language models available.

The inclusion of GPT-3.5 and GPT-4 allows us to directly compare their performance
with the models from the BIG-G and HELM benchmarks, providing insights into how
the latest models perform in established benchmarks.
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Model family Model size

BIG-G T=0 2m, 16m, 53m, 125m, 244, 422m, 1b, 2b, 4b, 8b, 27b, 128b

BIG-G sparse 2m, 16m, 53m, 125m, 244m, 422m, 1b, 2b, 4b, 8b

Table 5.1: Extracted BIG-bench models. Each model size value is a different model from the
model family.

5.3 Assessors

To predict the performance of various language models across different scenarios, we
employed assessors[35]. Explained previously, these are machine learning algorithms
designed to predict the performance of language models based on either metacognition
demand or the general difficulty. The machine learning algorithm chosen for this purpose
was XGBoost [40], a decision based ensemble method that used gradient boosting and is
known for their efficiency and effectiveness in predictive modelling tasks.

Given the inherent imbalance within our datasets, as we have significantly more in-
stances of incorrect output of the language model compared to the instances of correct
output of the language model, we incorporated the Random Oversampling technique
[41]. This approach involves augmenting the minority class by randomly replicating
instances within that class, thereby ensuring a balanced distribution of classes for the
training process. This step was crucial to prevent the model from being biased towards
the majority class, as it could otherwise skew the results.

5.3.1. Model Configuration

For each dataset, metacognition-loaded dataset and contrast dataset, we used different
configurations of assessors corresponding to the various language models being evalu-
ated. We employed two distinct configurations:

1. Combined model outputs: The objective is to leverage the diversity of multiple
models to train a single assessor. To do this, we aggregated the data from all avail-
able models within a benchmark. This approach allows the assessor to learn from
a diverse set of model behaviors, potentially capturing a broader range of perfor-
mance patterns. To account for model-specific differences, we introduced an addi-
tional meta-feature, the logarithm of the model size. This meta-feature represents
a logarithmic transformation of the number of parameters in a language model,
serving as a proxy for the model’s capacity and complexity.

• Cross-Validation: We employed Group K-Fold cross-validation. In this con-
text, the groups refer to unique instances in the datasets. By using this strategy,
we ensure that the same group of instances is not represented in both the train-
ing and testing sets, thereby guaranteeing that the test set comprises entirely
unseen instances.

• Models used: For the metacognition-loaded datasets, we used the combined
outputs of the BIG-G family models. For the contrast datasets, we used the
combined outputs of the HELM models.

2. Single model outputs: The objective is to gain a tailored understanding of each
model’s performance characteristics. To do this, we trained individual assessors
for each model, enabling a more focused analysis of each model’s unique behavior.
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Model Number of parameters
ai21/j1-grande-v2-beta 17B

ai21/j1-grande 17B
ai21/j1-jumbo 178B
ai21/j1-large 8B

AlephAlpha/luminous-base 13B
AlephAlpha/luminous-extended 30B
AlephAlpha/luminous-supreme 70B

anthropic/stanford-online-all-v4-s3 52B
cohere/command-medium-beta 6B

cohere/command-xlarge-beta 52B
cohere/large-20220720 13B

cohere/medium-20220720 6B
cohere/medium-20221108 6B

cohere/small-20220720 410M
cohere/xlarge-20220609 52B
cohere/xlarge-20221108 52B

microsoft/TNLGv2_530B 530B
microsoft/TNLGv2_7B 7B

openai/ada 350M
openai/babbage 1B

openai/curie 7B
openai/davinci 175B

openai/text-ada-001 350M
openai/text-babbage-001 1B

openai/text-curie-001 7B
openai/text-davinci-002 175B
openai/text-davinci-003 175B

together/bloom 176B
together/glm 130B

together/gpt-j-6b 6B
together/gpt-neox-20b 20B

together/opt-175b 175B
together/opt-66b 66B

together/t0pp 11B
together/t5-11b 11B

together/ul2 20B
together/yalm 100B

Table 5.2: Extracted HELM models with their number of parameters.
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• Cross-Validation: We employed the traditional K-Fold cross-validation method.
This strategy involves partitioning the dataset into k equally sized folds, where
each fold serves as the test set once, while the remaining k − 1 folds form the
training set. This process is repeated k times, with each fold used exactly once
as the test set. The results from the k iterations are then averaged to produce a
single estimation. This method is a well-established technique that provides a
robust measure of a model’s predictive capability. In our case, we used k = 5.

• Models used: For the metacognition-loaded datasets, we used the largest
model from the BIG-G family, BIG-G 128b. For the contrast datasets, we used
the largest model from the HELM models, Microsoft TNLGv2_530B. As well
as OpenAI’s GPT-3.5 and GPT-4 models for both metacognition-loaded and
contrast datasets.

5.4 Evaluation Scenarios

To comprehensively evaluate the predictive power of the metacognition-demands scale
and the general difficulty scale on language model performance, we designed four dis-
tinct assessment scenarios. As explained in previous sections, these scenarios are crafted
to explore the interplay between task complexity, model capabilities, and the nature of the
datasets, whether they are metacognition-loaded or not. By doing so, we aim to discern
the effectiveness of each scale in predicting language model performance across different
contexts. Below, we detail each scenario:

1. Metacognition-demands scale for metacognition-loaded datasets: This scenario
assesses the extent to which metacognitve demand, as quantified by our scale, cor-
relates with the performance of language models on tasks that explicitly requires
metacognition.

Metacognition-loaded datasets are designed to test a model’s ability to engage in
higher-order thinking processes. By applying the metacognition-demands scale, we
can evaluate whether this scale effectively captures the nuances of these complex
cognitive tasks and predicts model performance accordingly. A high predictability
in this scenario would validate the scale’s effectiveness in measuring metacognitive
task demands.

2. General difficulty scale for metacognition-loaded datasets: This scenario evalu-
ates the relationship between a general measure of task difficulty and language
model performance on the same metacognition-loaded datasets.

While the metacognition-demands scale is tailored to capture metacognitive pro-
cesses, the general difficulty scale provides a broader measure of task complex-
ity. By comparing the predictive power of the general difficulty scale against the
metacognition-demands scale, we can determine if a more generalized measure
of difficulty can also effectively predict performance on metacognitive tasks. If the
general difficulty scale shows comparable or superior predictive power, it may sug-
gest that metacognitive tasks share common elements with other types of difficult
tasks, or it may indicate that the general difficulty scale inadvertently captures as-
pects of metacognition.

3. Metacognition-demands scale for contrast datasets: This scenario explores whether
the metacognition-demands scale can predict performance on datasets with mini-
mal metacognitive content.
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By applying the metacognition-demands scale to these datasets, we aim to investi-
gate if the scale unintentionally captures other aspects of task difficulty that influ-
ence model performance. A low correlation between the metacognition-demands
scale and model performance would indicate that the scale is specific to metacogni-
tive tasks. Conversely, a moderate to high correlation might suggest that the scale
captures broader elements of task complexity.

4. General difficulty scale for contrast datasets: This scenario assesses the predictive
accuracy of the general difficulty scale on non-metacognition-loaded datasets.

By applying this scale to contrast datasets, we can evaluate its effectiveness in pre-
dicting model performance on tasks that do not require metacognitive skills. A high
correlation between the general difficulty scale and model performance would val-
idate the scale’s utility in assessing a wide range of tasks. It would also provide a
benchmark for comparing the effectiveness of the metacognition-demands scale.

These four scenarios provide a comprehensive framework for evaluating the effec-
tiveness of the metacognition-demands scale and the general difficulty scale in predict-
ing language model performance. By examining both metacognition-loaded and contrast
datasets, we can gain insights into the specific and general factors that influence model
success. This multi-faceted approach ensures a robust assessment of the scales’ predictive
power and their applicability across different types of tasks.

5.5 Evaluation Metrics

To rigorously evaluate the performance of our assessors, we employed two key metrics:
the Area Under the Receiver Operating Characteristic Curve (AUC) [42] and the Brier
score [44]. These metrics were chosen for their ability to provide comprehensive insights
into the predictive accuracy and reliability of our models.

5.5.1. Area Under the Receiver Operating Characteristic Curve (AUC)

The AUC is a widely used metric in machine learning for evaluating the performance of
binary classification models. It measures the ability of the model to distinguish between
two classes, in this case, correct and incorrect answers provided by the language models.
The AUC is derived from the Receiver Operating Characteristic (ROC) curve, which plots
the true positive rate (sensitivity) against the false positive rate (1-specificity) at various
threshold settings.

An AUC value ranges from 0 to 1. An AUC of 1 indicates perfect classification, mean-
ing the model can perfectly distinguish between the two classes. An AUC of 0.5 suggests
no discriminative power, equivalent to random guessing. And values between 0.5 and
1 indicate varying degrees of predictive accuracy, with higher values representing better
performance. The AUC is particularly useful because it is insensitive to class imbalance,
providing a robust measure of model performance even when the classes are not equally
represented [43].

5.5.2. Brier Score

The Brier score is another important metric used to measure the accuracy of probabilistic
predictions. It is defined as the mean squared difference between the predicted probabil-
ity assigned to the possible outcomes and the actual outcome.
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The Brier score is calculated as follows:

Brier Score =
1
N

N

∑
i=1

( fi − oi)
2

where N is the number of predictions, fi is the predicted probability for instance i, and
oi is the actual outcome (0 or 1). The Brier score ranges from 0 to 1, where 0 indicates
perfect accuracy and 1 represents the worst possible prediction. A lower Brier score re-
flects better predictive performance. Unlike the AUC, the Brier score takes into account
the confidence of the predictions, providing a more nuanced view of the model’s perfor-
mance. It penalizes both overconfident incorrect predictions and underconfident correct
predictions, encouraging well-calibrated probability estimates.



CHAPTER 6

Results

In this chapter, we present the analysis of the experimental results obtained from our
study. The experiments were designed to evaluate the predictive power of two distinct
scales, the metacognition-demands scale and the general difficulty scale, across different
datasets and language models. The results is structured into two main sections. The first
section focuses on the metacognition-loaded datasets and the second section focuses on
the contrast datasets which are the non-metacognition loaded datasets.

6.1 Overview

Our experiments aimed to evaluate the predictive power of metacognition-demand and
general difficulty scales on the performance of various language models. We conducted
these evaluations on both metacognition-loaded datasets from the BIG-bench benchmark
and non-metacognition-loaded datasets from the HELM benchmark.

For metacognition-loaded datasets, with the results summarised in Table 6.1, we ob-
served high predictability when using the metacognition-demands scale. This outcome
aligns with our expectations, as the scale is specifically designed to assess the metacog-
nitive aspects of tasks. Consequently, it is good at capturing the nuances that contribute
to the difficulty of the questions requiring metacognitive processing.

When applying the general difficulty scale to the same metacognition-loaded datasets,
we also noted high values of AUC, although slightly lower than those obtained with
the metacognition-demands scale. This slight decrease suggests that while the general
difficulty scale is capable of capturing a broad range of challenging elements within a
question, it may not be as finely tuned to the specific demands of metacognition as the
specialized scale.

Turning to contrast datasets with the results summarised in Table 6.2, which primarily
consist of understanding-based questions with lower metacognitive demands, we found
the lowest predictability when employing the metacognition-demands scale. This result
was anticipated because the scale is less effective at capturing the full spectrum of diffi-
culty in questions that do not heavily engage metacognitive skills.

However, when we used the general difficulty scale on contrast datasets, predictabil-
ity was significantly higher. The AUC values approached those observed when applying
the metacognition-demands scale to metacognition-loaded datasets. This finding sug-
gests that the general difficulty scale is more versatile and can effectively measure the dif-
ficulty level of questions that do not necessarily require metacognitive processing, likely
because it encompasses a wider range of difficulty factors, such as language complexity
and content knowledge other than metacognition.

37
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The performance of the GPT family, particularly GPT-4, was noteworthy, showing
higher predictability across both types of datasets compared to the BIG-G family and
the original HELM models. This indicates that advancements in language model archi-
tectures and training can significantly enhance their ability to handle a variety of tasks,
including those with metacognitive demands. Figure 6.1 and Figure 6.2 illustrate the suc-
cess rate across the levels of demands in the metacognition-loaded and contrast datasets,
respectively, using both the metacognition-demands and general difficulty scales, using
the instance outputs of GPT-3.5 and GPT-4.

Benchmark Model AUC Brier score

GPT-3.5 0.716 0.208

Metacognition (BigBench) GPT-4 0.688 0.218

GPT-3.5 0.679 0.219

General (HELM) GPT-4 0.688 0.218

Table 6.1: Summary of assessor performance on the metacognition-loaded datasets evaluated
using the metacognition-demands scale and the general difficulty scale, and using the instance

outputs of the models GPT-3.5 and GPT-4, with results aggregated across all benchmarks.

Benchmark Model AUC Brier score

GPT-3.5 0.603 0.242

Metacognition (BigBench) GPT-4 0.651 0.204

GPT-3.5 0.695 0.217

General (HELM) GPT-4 0.712 0.168

Table 6.2: Summary of assessor performance on the contrast datasets (non-metacognition-loaded)
evaluated using the metacognition-demands scale and the general difficulty scale, and using the
instance outputs of the models GPT-3.5 and GPT-4, with results aggregated across all benchmarks.

6.2 Metacognition-loaded datasets

In this section, we we will explain the experiments in more detail, with the outputs the
BIG-G family and GPT family. We will first analyse the performance of the assessors on
the metacognition-loaded datasets, applied with the metacognition-demands scale and
the generic difficulty scale and in the next section we will analyse the performance on the
contrast datasets. For the Metacognition-demands scale section, we have included the
results using both the three metacognition scale and the single metacognition scale to do
a comparative analysis. Additional results using the three-dimensional metacognition
scale are provided in Appendix A.

6.2.1. Metacognition-demands scale

BIG-G Family

The results from the BIG-G family of models indicate that the three-dimensional metacognition-
demands scale generally provides higher AUC values compared to the one metacog-
nition scale (Table 6.3). This suggests that a multidimensional approach to measuring
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Figure 6.1: Success rate over the level of demand on the metacognition-loaded datasets using
each scale: metacognition-demands scale and general difficulty scale, when using GPT3-5 and
GPT-4 to generate instance outputs. The black line represents the aggregated success rate across
all benchmarks, and the the colored lines represent individual benchmarks with a confidence
interval of 95%. The dotted line for the metacognition-demands scale represents an extrapolation
for the level 5 metacognition demand, calculated using a linear regression of the data points from

levels 1 to 4.

metacognition is more effective in capturing the complexity of tasks that require metacog-
nitive processing.

When focusing on the BIG-G 128b model in Table 6.5, we observe that its predictabil-
ity slightly surpasses that of the combined BIG-G models when using the three-dimensional
metacognition scale across all benchmarks combined. However, this trend reverses when
examining individual benchmarks, where the combined BIG-G models (Table 6.4) exhibit
higher predictability than the BIG-G 128b model (Table 6.6) on all but the EIE benchmark.
This may be due to the increased amount and variety of data available when combining
multiple benchmarks, which allows the assessor to learn from a broader range of in-
stances.

When employing the single metacognition scale, the combined BIG-G models exhibit
a higher predictability with all the benchmarks combined, but when broken down into
individual benchmarks, the model BIG-G 128b obtains higher predictability for all bench-
marks except the EIE benchmark. The KU benchmark consistently shows the highest
predictability for both the combined BIG-G models and the BIG-G 128b model, with
the three metacognition scales reaching an AUC of 0.905 for model BIG-G 128b. The
VFV benchmark also demonstrates good predictability, particularly with the single scale
metacognition scale, with an AUC of 0.702. The EIE benchmark however, has lower pre-
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Figure 6.2: Success rate over the level of demand on the contrast datasets using each scale:
metacognition-demands scale and general difficulty scale, when using GPT3-5 and GPT-4 to gen-
erate instance outputs. The black line represents the aggregated success rate across all bench-

marks, and the the colored lines represent individual benchmarks.

dictability when using the single metacognition scale, though it improves significantly
with the three metacognition scale.

In summary, the results suggest that although both metacognition scales perform well
in general, the three metacognition scale generally has better predictability. The slight
decrease in predictability when using the single scale may suggest that the three dimen-
sions approach may capture nuances that are lost when the assessment is condensed into
a single scale.

Annotation option AUC Brier score

Three metacognition scales 0.744 0.198

One metacognition scale 0.635 0.235

Table 6.3: Assessor performance on the metacognition-loaded datasets using the three metacog-
nition scale and one metacognition scale, and using the outputs combination of all BIG-G models

instance outputs, with results aggregated across all benchmarks.

GPT Family

The combined results for all metacognition benchmarks within the GPT family (Table
6.7), indicate that both GPT-3.5 and GPT-4 show improved predictability over the BIG-G
family models. The highest AUC value achieved with the BIG-G models was 0.635 using
the single-dimensional metacognition scale, whereas GPT-3.5 achieves a higher AUC of
0.716, indicating better predictability. GPT-4, while slightly lower, also shows improved
predictability compared to the BIG-G models.
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Benchmark Annotation option AUC Brier score

Three metacognition scales 0.717 0.195

EIE One metacognition scale 0.577 0.241

Three metacognition scales 0.801 0.181

KU One metacognition scale 0.597 0.241

Three metacognition scales 0.654 0.225

VFV One metacognition scale 0.634 0.233

Table 6.4: Assessor performance on the metacognition-loaded datasets using the three metacog-
nition scale and one metacognition scale, and using the outputs from the combination of all BIG-G

models, with results disaggregated by individual benchmarks.

Annotation option AUC Brier score

Three metacognition scales 0.757 0.160

One metacognition scale 0.521 0.314

Table 6.5: Assessor performance on the metacognition-loaded datasets using the three metacog-
nition scale and one metacognition scale, and using the outputs of the model BIG-G 128b, with

results aggregated across all benchmarks.

Benchmark Annotation option AUC Brier score

Three metacognition scales 0.618 0.223

EIE One metacognition scale 0.441 0.262

Three metacognition scales 0.905 0.082

KU One metacognition scale 0.60 0.216

Three metacognition scales 0.513 0.250

VFV One metacognition scale 0.702 0.202

Table 6.6: Assessor performance on the metacognition-loaded datasets evaluated using the three
metacognition scale and one metacognition scale, and using the outputs of the model BIG-G 128b,

with results disaggregated by individual benchmarks.

When examining the benchmarks individually in Table 6.8, we observe a general de-
crease in predictability, likely due to the reduced dataset size and diversity. But in gen-
eral, GPT-4 outperformed GPT-3.5 in two of the benchmarks (KU and VFV benchmarks),
with the KU benchmark showing the highest predictability, with an AUC of 0.693.

Model AUC Brier score

GPT-3.5 0.716 0.208

GPT-4 0.688 0.218

Table 6.7: Assessor performance on the metacognition-loaded datasets using the three metacog-
niton scale and one metacogniton scale, and using the outputs of the models GPT-3.5 and GPT-4,

with results aggregated across all benchmarks.
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Benchmarks Model AUC Brier score

GPT-3.5 0.505 0.256

EIE GPT-4 0.502 0.259

GPT-3.5 0.662 0.168

KU GPT-4 0.693 0.239

GPT-3.5 0.501 0.251

VFV GPT-4 0.540 0.240

Table 6.8: Assessor performance on the metacognition-loaded datasets evaluated using the
metacognition-demands scale, with the outputs of the combination of the BIG-G models and the

model BIG-G 128b, with results disaggregated by individual benchmarks.

6.2.2. General difficulty scale

BIG-G family

When using the general difficulty scale to evaluate the predictability of metacognition-
loaded datasets, the predictability with the combined BIG-G models appeared to very
similar with using the metacognition-demands scale (Table 6.9). However, the predictabil-
ity is slightly lower when using the BIG-G 128b model alone. When looking at the bench-
marks individually in table 6.10, the predictability in general appeared to be higher with
the general difficulty scale. This could be because the general difficulty scale is broader
and potentially captures a wider range of task complexities, not limited to metacogni-
tive demands. Therefore it is important to consider whether the metacognition-demands
scale is truly reflecting the intended measure of metacognition or if it is inadvertently
capturing additional elements that contribute to the difficulty of the items.

In general, the combined BIG-G models has a higher predictability than the BIG-G
128b model alone. The KU benchmark, in particular, achieved the highest predictability.

Model AUC Brier score

All models 0.639 0.234

BIG-G 128b 0.463 0.260

Table 6.9: Assessor performance on the metacognition-loaded datasets evaluated using the
generic difficulty scale, with the outputs of the combination of the BIG-G models and the model

BIG-G 128b, with results aggregated across all benchmarks.

GPT family

When using the instance outputs of GPT-3.5 and GPT-4 (Table 6.11), the results surpassed
those obtained with the BIG-G models and GPT-4 showed a higher predictability than
GPT-3.5, achieving an AUC of 0.707.

When analysing the benchmarks individually in table 6.12, the predictability has in-
creased for the EIE and VFV benchmarks compared to when using the metacogntion-
demands scale. However, the predictability has decreased for the KU benchmark. This
might suggest that the KU benchmark may be more loaded with metacognition ele-
ments, which are better captured by the metacognition-demands scale. While the EIE
and VFV benchmarks might be loaded more of other kinds of aspects beyond metacog-
nition, which are more accurately reflected by the general difficulty scale.
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Benchmark Model AUC Brier score

All models 0.594 0.229

EIE BIG-G 128b 0.525 0.246

All models 0.689 0.219

KU BIG-G 128b 0.735 0.188

All models 0.674 0.221

VFV BIG-G 128b 0.531 0.247

Table 6.10: Assessor performance on the metacognition-loaded datasets evaluated using the
generic difficulty scale, with the outputs of the combination of BIG-G models and the model

BIG-G 128b, with results disaggregated by individual benchmarks.

In summary, while the general difficulty scale may not be as effective as the metacognition-
demands scale in predicting performance on tasks with high metacognitive content, it
provides valuable insights into the overall task complexity. The scale’s broader scope
appears to capture a wider range of task challenges, making it a useful tool for assessing
model performance across diverse benchmarks.

Model AUC Brier score

GPT-3.5 0.679 0.219

GPT-4 0.707 0.219

Table 6.11: Assessor performance on the metacognition-loaded datasets evaluated using the gen-
eral difficulty scale, and using the outputs of the models GPT-3.5 and GPT-4, with results aggre-

gated across all benchmarks.

Benchmarks Model AUC Brier score

GPT-3.5 0.516 0.243

EIE GPT-4 0.552 0.247

GPT-3.5 0.650 0.169

KU GPT-4 0.392 0.197

GPT-3.5 0.611 0.231

VFV GPT-4 0.715 0.194

Table 6.12: Assessor performance on the metacognition-loaded datasets evaluated using the gen-
eral difficulty scale, and using the outputs of the models GPT-3.5 and GPT-4, with results disag-

gregated by individual benchmarks.

6.3 Contrast datasets

In this section, we analyse the performance of the assessors on contrast datasets, which
comprises datasets with minimal metacognitive content, first using the metacognition-
demands scale and then using the generic difficulty scale for assessment.
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6.3.1. Metacognition-demands scale

First we will talk about the original HELM models and then proceed to the GPT family.

Orignal HELM models

The results with all the benchmarks combined, for both all the models combined and for
the largest model Microsoft TNLGv2_530B is shown in Table 6.13. For all the models com-
bined, we have a moderate level of predictability with an AUC of 0.599. This suggests
that while there is some correlation between the metacognition demands and the model
performance, it is not particularly strong. The largest model, Microsoft TNLGv2_530B,
demonstrates a slightly lower AUC of 0.565. The predictability is not very high in general,
probably because as these are understanding datasets, they contain very little metacogni-
tion, therefore using a metacognition-demands scale to explain their difficulty is not very
suitable.

When examining individual benchmarks in Table 6.14, we observe a range of pre-
dictability scores. Domains such as US Foreign Policy and Computer Security from the
MMLU dataset exhibit higher scores, suggesting that certain content areas may align
more closely with the metacognition-demands scale, despite the overall low metacogni-
tive content of the datasets. On the other hand, benchmarks like MMLU Abstract Algebra
and TruthfulQA, with AUC scores near 0.50, indicate that the metacognition-demands
scale does not effectively predict performance in these areas.

The success rates of the Microsoft TNLGv2_530B model (Figure 6.3) further illustrate
the weak correlation between metacognitive demand and model performance. The suc-
cess rate remains consistently below 0.50 when considering all datasets combined, rein-
forcing the notion that metacognitive demand is not a primary factor influencing model
success in these benchmarks.

Model AUC Brier score

All models 0.599 0.207

microsoft/TNLGv2_530B* 0.565 0.250

Table 6.13: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the metacognition-demands scale, with the outputs of the original HELM models and Mi-

crosoft’s TNLGv2_530B Model, with results aggregated across all benchmarks.

GPT Family

Turning to the GPT family, we find that GPT-4 exhibits a higher level of predictability
than GPT-3.5 with an AUC of 0.651 when considering all benchmarks collectively (Table
6.15). This improvement over the original HELM models suggests that GPT language
models may be better at handling tasks even when they are not explicitly metacognitive
in nature.

An analysis of individual benchmarks (Table 6.16) reveals that the AUC scores have
also shown an improvement compared to the results from using the original HELM
benchmarks. The Abstract Algebra dataset shows the highest predictability, with an
AUC of 0.678, suggesting a higher predictability for this particular domain. However,
TruthfulQA remains a challenging benchmark with the lowest predictability.

The success rates shown in Figure 6.2 for GPT-3.5 and GPT-4 across different HELM
benchmarks show a more pronounced trend of decreasing success with increasing metacog-
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Benchmarks Model AUC Brier score

All models 0.525 0.253

MMLU Abstract Algebra microsoft/TNLGv2_530B 0.520 0.251

All models 0.588 0.248

MMLU Computer Security microsoft/TNLGv2_530B 0.610 0.238

All models 0.574 0.245

MMLU College Chemistry microsoft/TNLGv2_530B 0.505 0.258

All models 0.504 0.257

MMLU Econometrics microsoft/TNLGv2_530B 0.560 0.250

All models 0.608 0.251

MMLU US Foreign Policy microsoft/TNLGv2_530B 0.582 0.243

All models 0.481 0.351

BBQ microsoft/TNLGv2_530B 0.624 0.243

All models 0.556 0.266

TruthfulQA microsoft/TNLGv2_530B 0.504 0.251

Table 6.14: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the metacognition-demands scale, with the outputs of the original HELM models and Mi-

crosoft’s TNLGv2_530B Model, with results disaggregated by individual benchmarks.

Figure 6.3: Success rate over metacognition demand on the contrast datasets using each scale:
metacognition-demands scale and general difficulty scale, when using the instance outputs of the
model Microsoft TNLGv2_530B. The black line represents the aggregated success rate across all

benchmarks, and the the colored lines represent individual benchmarks

nition demand compared to the Microsoft TNLGv2_530B model (Figure 6.3). This trend
suggests that while the metacognition-demands scale may not be the most suitable mea-
sure for non-metacognitive tasks, it still provides some insight into the relative difficulty
experienced by these advanced models.
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In summary, while the metacognition-demands scale offers some predictive value, its
effectiveness is limited for datasets that do not explicitly engage metacognitive processes.
The moderate predictability observed may arise from incidental alignment between the
scale and certain task features rather than a direct measurement of metacognitive de-
mand. The results underscore the need for more nuanced scales or alternative measures
that can more accurately capture the factors influencing model performance on tasks with
low metacognitive content.

Model AUC Brier score

GPT-3.5 0.603 0.242

GPT-4 0.651 0.204

Table 6.15: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the metacognition-demands scale, with the outputs of the models GPT-3.5 and GPT-4, with

results aggregated across all benchmarks.

Benchmarks Model AUC Brier score

GPT-3.5 0.566 0.251

MMLU Abstract Algebra GPT-4 0.678 0.245

GPT-3.5 0.613 0.237

MMLU Computer Security GPT-4 0.570 0.244

GPT-3.5 0.664 0.206

MMLU College Chemistry GPT-4 0.637 0.214

GPT-3.5 0.554 0.250

MMLU Econometrics GPT-4 0.563 0.240

GPT-3.5 0.551 0.245

MMLU US Foreign Policy GPT-4 0.438 0.247

GPT-3.5 0.616 0.233

BBQ GPT-4 0.548 0.248

GPT-3.5 0.552 0.251

TruthfulQA GPT-4 0.503 0.249

Table 6.16: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the metacognition-demands scale, with the outputs of the models GPT-3.5 and GPT-4, with

results disaggregated by individual benchmarks.

6.3.2. General difficulty scale

Original HELM models

When applying the general difficulty scale to the HELM benchmarks, we observe an un-
expected trend, as the predictability was generally lower than when using the metacognition-
demands scale (Table 6.17). When examining the benchmarks individually in Table 6.18,
the trend of lower predictability is still present. This counter-intuitive result may sug-
gest that the general difficulty scale may not be capturing the nuances of the tasks within
the HELM benchmarks as effectively as the metacognition-demands scale because it is
too broad or not sufficiently aligned with the specific challenges presented by the HELM



6.3 Contrast datasets 47

benchmarks, which leads to a less accurate prediction of model performance. It is also
possible that the HELM benchmarks, while not explicitly metacognitive, still contain ele-
ments that are better captured by the metacognition-demands scale, such as the need for
understanding context or applying knowledge in a nuanced way.

Model AUC Brier score

All models 0.573 0.214

microsoft/TNLGv2_530B 0.536 0.245

Table 6.17: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the general difficulty scale, with the outputs of the original HELM models and Microsoft’s

TNLGv2_530B Model, with results aggregated across all benchmarks.

Benchmarks Model AUC Brier score

All models 0.546 0.254

MMLU Abstract Algebra microsoft/TNLGv2_530B 0.567 0.236

All models 0.593 0.249

MMLU Computer Security microsoft/TNLGv2_530B 0.561 0.240

All models 0.562 0.248

MMLU College Chemistry microsoft/TNLGv2_530B 0.562 0.249

All models 0.511 0.258

MMLU Econometrics microsoft/TNLGv2_530B 0.556 0.246

All models 0.615 0.250

MMLU US Foreign Policy microsoft/TNLGv2_530B 0.525 0.250

All models 0.478 0.358

BBQ microsoft/TNLGv2_530B 0.455 0.255

All models 0.549 0.267

TruthfulQA microsoft/TNLGv2_530B 0.537 0.248

Table 6.18: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the general difficulty scale, with the outputs of the original HELM models and Microsoft’s

TNLGv2_530B Model, with results disaggregated by individual benchmarks.

GPT Family

In contrast to the HELM models, the GPT family demonstrated improved predictabil-
ity when assessed using the general difficulty scale. This predictability was also higher
compared to assessments using the metacognition-demands scale. This improvement
suggests that the GPT models, particularly GPT-4, may be more adapted to the broader
challenges represented by the general difficulty scale, possibly due to their advanced ar-
chitectures and larger training datasets.

GPT-4 outperformed GPT-3.5 when evaluated using all the benchmarks combined
(Table 6.19). Even when the benchmarks were examined individually (Table 6.20), GPT-4
maintained its superior predictability across most of them. This reinforces the notion that
GPT-4 is better equipped to handle a wide range of tasks and difficulty levels compared
to GPT-3.5.
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The BBQ and MMLU Computer Security benchmarks achieved the highest predictabil-
ity scores, suggesting that these benchmarks align well with the general difficulty scale,
possibly due to their structured nature or the clear differentiation of difficulty levels
within their questions. On the other hand, the Abstract Algebra and Foreign Policy
benchmarks from the MMLU dataset achieved the lowest predictability. The consistently
low predictability for the MMLU Foreign Policy benchmark, regardless of the scale used,
raises questions about the benchmark’s validity. It suggests that performance on this
task may not be indicative of a model’s capabilities and could be influenced by factors
not accounted for by either scale, such as randomness.

Model AUC Brier score

GPT-3.5 0.695 0.217

GPT-4 0.712 0.168

Table 6.19: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the general difficulty scale, with the outputs of the models GPT-3.5 and GPT-4, with results

aggregated across all benchmarks.

Benchmarks Model AUC Brier score

GPT-3.5 0.395 0.266

MMLU Abstract Algebra GPT-4 0.552 0.257

GPT-3.5 0.627 0.226

MMLU Computer Security GPT-4 0.769 0.186

GPT-3.5 0.697 0.209

MMLU College Chemistry GPT-4 0.710 0.211

GPT-3.5 0.639 0.219

MMLU Econometrics GPT-4 0.627 0.225

GPT-3.5 0.300 0.266

MMLU US Foreign Policy GPT-4 0.337 0.238

GPT-3.5 0.774 0.177

BBQ GPT-4 0.748 0.182

GPT-3.5 0.594 0.240

TruthfulQA GPT-4 0.574 0.241

Table 6.20: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the general difficulty scale, with the outputs of the models GPT-3.5 and GPT-4, with results

disaggregated by individual benchmarks.
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Conclusions

In this project, we have explored the development of a systematic approach to quantify
the demands of metacognition and critical thinking in various question instances, with
the aim of predicting the performance of AI systems. By developing a comprehensive
rubric and employing assessors, we have evaluated the effectiveness of benchmarks de-
signed to measure metacognitive abilities.

Our findings indicate that the metacognition-demands scale, which incorporates mul-
tiple dimensions of metacognition, provides better predictability of language model per-
formance for these benchmarks compared to the general difficulty scale. This suggests
that the metacognition-demands scale is more finely tuned to capture the specific chal-
lenges posed by tasks requiring metacognitive processing. Therefore, it serves as a reli-
able proxy for predicting question success rates within metacognition-loaded contexts.

However, since the predictability of the general difficulty scale was also moderately
high, this indicates that these benchmarks might not be purely measuring metacogni-
tive abilities but also incorporating elements of general task difficulty. Particularly, the
KU benchmark is more focused on metacognitive aspects, as evidenced by higher pre-
dictability with the metacognition-demands scale. However, the EIE and VFV bench-
marks appear to mix metacognitive demands with other general task difficulties, as it
has comparable or higher predictability with the general difficulty scale.

In the context of non-metacognitive datasets, which contain minimal metacognitive
content, the predictability varied significantly between the two scales. The metacognition-
demands scale provided moderate predictability with an AUC of 0.603 using GPT3.5,
which was the lowest predictability obtained, suggesting it is less suitable than for metacog-
nition loaded tasks, with the general difficulty scale being more suitable, which achieved
an AUC of 0.712, which is the second highest predictability obtained. To determine
the statistical significance of this difference, and given the small sample sizes for the
two scales, we have considered non-parametric tests such as the Mann-WhiteneyU or
Wilcoxon Signed-Rank tests [50], achieving a p-value of 0.00793, which confirmed that
the observed differences in predictability are statistically significant. This suggests that
the general difficulty scale is more versatile and effective in capturing a broader range
of task complexities that do not necessarily involve metacognitive skills. The lower pre-
dictability of the metacognition-demands scale in these contexts highlights the need for
context-specific assessment tools that align with the specific demands of the tasks being
evaluated.

In addition, the performance of the GPT family, especially GPT-4, was noteworthy,
as it showed a higher level of predictability across both metacognition-loaded and non-
metacognitive datasets, as well as having success rates. This indicates that the latest ad-
vancements in language models have enhanced their ability to handle a variety of tasks,
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including those with metacognitive demands. However, it is important to distinguish be-
tween the model’s inherent performance and its predictability. While GPT-4’s predictabil-
ity was higher, indicating that its performance could be more accurately forecasted, this
does not necessarily imply that GPT-4 always outperforms other models. Instead, it sug-
gests that GPT-4’s responses are more consistent and aligned with the evaluative criteria
used in our study.

7.1 Limitations and Future Work

While our research has yielded significant insights, it is important to acknowledge its
limitations and outline directions for future work.

1. Dataset diversity and size: One of the primary limitations of this study is the
relatively small size and limited diversity of the metacognition-loaded datasets.
These datasets used from the BIG-bench repository may not fully capture the wide
range of real-world tasks that require metacognitive processing, which could af-
fect the generalizability of our findings to broader contexts. Therefore, future re-
search should aim to include a broader range of tasks and datasets to ensure a more
comprehensive evaluation of AI metacognition and benchmarks, and improve the
reliability of the results.

2. Model diversity: Our study was primarily focused on the BIG-G family and the
GPT family of models. While these models are representative of state-of-the-art lan-
guage models, they do not encompass the full spectrum of available models. Future
research could include a broader range of models, such as Google’s LaMDA [38],
Meta’s LLaMA [39], Qwen1.5-MoE [51], Claude Sonnet 3.5 [52], and other emerg-
ing models, which would allow us to have a more comprehensive understanding of
the strengths and weaknesses of different models in handling metacognitive tasks.

3. Annotation process: The human annotation process in this study was another area
with room for improvement. The small sample size of raters and instances may
have limited the robustness of the rubric validation process. Increasing the number
of human annotators and the diversity of the instances they evaluate could enhance
the reliability and validity of the rubric. We could also incorporate a more rigorous
training process for human raters such as providing more detailed guidelines or
regular feedback, to further ensure the consistency and accuracy of the annotations.
Additionally, we could also incorporate the use of anchors, which are standardized
examples that serve as reference points, to standardise the human and GPT-4 la-
belling process and help in maintaining consistency across different annotators and
instances.

4. Exploration of other domains: We could extend the study in other domains be-
yond metacognition, such as language complexity, which could allow us to make
comparative analyses to determine the predictability of language model perfor-
mance across different domains. This would provide insights to whether certain
benchmarks are more loaded with other specific domain demands, which could
also allow us to refine our metacognition rubric to better capture the metacognitive
demands and enhance the accuracy and relevance of the assessments.
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7.2 Legacy

This project represents a step forward in the systematic quantification of metacognitive
demands and critical thinking in AI systems. We have gained a deeper understanding
of the complexities involved in measuring metacognitive demands and the factors that
influence AI performance on metacognitive tasks. We have also demonstrated the impor-
tance of using tailored scales to accurately assess model performance and the potential
of advanced language models, such as GPT-4, to handle a variety of tasks with metacog-
nitive demands.

The findings and tools developed in this project can be useful to practitioners, re-
searchers and (data) scientists in some ways. For instance, the rubric and assessors can
be used to evaluate and benchmark the metacognitive capabilities of different AI systems,
providing a standardized approach to measuring AI performance on complex tasks,
which can facilitate comparative studies. In addition, the insights from this research
can inform the development of more sophisticated AI models that exhibit metacognitive
behaviors. By understanding the specific demands of metacognitive tasks, practitioners
and researchers can design models that are better equipped to handle real-world chal-
lenges, thereby enhancing their practical utility.

This project is closely connected with the studies I have completed throughout my
academic journey. Here, I have applied and integrated the knowledge acquired during
my studies to address real-world problems in the field of artificial intelligence, specifi-
cally focusing on analyzing the metacognitive processes in large language models (LLMs).
The development of this project required a strong foundation in subjects like statistics,
programming, and machine learning. Courses such as Programming, Visualisation, and
Statistical Models for Decision Making provided me with the skills to create tables and
plots, and interpret the results obtained in this study. The knowledge gained from the
subjects Descriptive and Predictive Models, Evaluation, Deployment and Monitorisa-
tion of Models, and Natural Language and Information Retrieval gave me a deeper un-
derstanding of machine learning algorithms, LLMs, and their limitations. In addition,
practical courses such as Project I: Understanding Data, Project II: Data Integration and
Preparation, and Project III: Data Analysis have provided me with hand-on experience
and helped me tackle the various challenges that came up during this project.

Finally, the project required the application of several transversal competences. The
most relevant were:

• Analysis and problem solving: The project required strong problem solving skills
given that metacognition is a highly complex domain. Achieving the objectives
needed careful planning and thoughtful consideration of each step. Additionally,
drawing meaningful conclusions from a substantial volume of results required good
analytical abilities.

• Innovation and creativity: The project required innovative thinking to design a
comprehensive rubric that accurately measures metacognitive demands. Creativ-
ity was also essential when developing methods for evaluating AI systems and
investigating various machine learning techniques to build effective assessors.

• Teamwork and leadership: This project involved close collaboration with the OECD
AI Skills Reasoning Group, therefore effective teamwork skills were necessary to
coordinate efforts, share insights, and ensure that the project stayed on track and
met its objectives.
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• Effective communication: The ability to effectively communicate was essential for
presenting the research findings, both in written form and through presentations
to collaborators. This competence ensured that complex ideas were conveyed in an
understandable manner, facilitating better understanding and collaboration among
team members and external partners.
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APPENDIX A

Three Metacognition Scales

In this chapter, we present the results when applying the three metacognition scale to
the different datasets: the metacognition-loaded datasets and for the contrast datasets
(non-metacognition-loaded), and we will compare the results to when using the single
metacognition scale.

A.1 Metacognition-loaded datasets

A.1.1. GPT Family

When applying the three metacognition scale to the metacognition-loaded datasets and
using the GPT family for instance outputs, we observe that the AUC values are generally
consistent with those obtained using the single metacognition scale, but there are some
slight differences.

For the combined benchmarks in Table A.1, the predictability for GPT-3.5 has im-
proved, while for GPT-4, it has slightly decreased. And the same as with the simgle
metacogntion scale, GPT-3.5 still achieves a higher AUC value than GPT-4. This suggests
that the three metacognition scales may capture certain nuances that are more effectively
leveraged by GPT-3.5.

When examining the benchmarks individually in Table A.2, the predictability results
remain very similar to those obtained with the single metacognition scale. However,
there is a slight improvement in predictability for GPT-4. The KU benchmark continues
to exhibit the highest predictability, achieving an AUC of 0.886.

The slight improvements in predictability when using the three metacognition scales
suggest that these scales may provide a more nuanced assessment of metacognitive de-
mands. This could be due to the fact that the three scales capture different dimensions
of metacognition, offering a more comprehensive evaluation of the cognitive processes
involved.

Model AUC Brier score

GPT3.5 0.754 0.197

GPT4 0.657 0.230

Table A.1: Assessor performance on the metacognition-loaded datasets evaluated using the three
metacognitions scale, with the outputs of the models GPT-3.5 and GPT-4, with results aggregated

across all benchmarks.
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Benchmarks Model AUC Brier score

GPT3.5 0.550 0.258

EIE GPT4 0.522 0.299

GPT3.5 0.552 0.155

KU GPT4 0.886 0.086

GPT3.5 0.518 0.245

VFV GPT4 0.625 0.239

Table A.2: Assessor performance on the metacognition datasets evaluated using the three
metacognition scale, with the outputs of the models GPT-3.5 and GPT-4, with results disaggre-

gated by individual benchmarks.

A.2 Contrast datasets

In this section we will apply the three metacognition scale to the contrast datasets, which
are datasets that contain minimal metacognition.

A.2.1. Original HELM models

When applying the three metacognition scale to the original HELM models’ instance
outputs, we observe a decrease in predictability for the combined benchmarks. This trend
is evident for both the Microsoft TNLGv2_530B model and the aggregated results of all
models combined (Table A.3). This decline suggests that the three metacognition scales
may not be as effective in capturing the nuances of tasks within the HELM benchmarks,
which are designed to have minimal metacognitive content.

When examining the individual benchmarks (Table A.4), the predictability results re-
main largely consistent with those obtained using the single metacognition scale, there
is no significant improvement, indicating that the additional dimensions provided by
the three metacognition scales do not offer a substantial advantage for these particular
datasets.

The lack of improvement in predictability when using the three metacognition scales
may imply that these scales are more suited to tasks with explicit metacognitive demands.
Since the HELM benchmarks are designed to assess general language understanding and
reasoning without a strong focus on metacognition, the three metacognition scales may
not align well with the inherent task characteristics. Consequently, the single metacogni-
tion scale appears to be just as effective, for evaluating these non-metacognitive tasks.

Model AUC Brier score

All models 0.547 0.258

microsoft/TNLGv2_530B* 0.524 0.249

Table A.3: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the three metacognition scale, with the outputs of the original HELM models and Mi-

crosoft’s TNLGv2_530B Model, with results aggregated across all benchmarks.
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Benchmarks Model AUC Brier score

All models 0.542 0.255

MMLU Abstract Algebra microsoft/TNLGv2_530B 0.468 0.279

All models 0.592 0.257

MMLU Computer Security microsoft/TNLGv2_530B 0.661 0.232

All models 0.603 0.242

MMLU College Chemistry microsoft/TNLGv2_530B 0.618 0.251

All models 0.554 0.258

MMLU Econometrics microsoft/TNLGv2_530B 0.442 0.288

All models 0.616 0.253

MMLU US Foreign Policy microsoft/TNLGv2_530B 0.478 0.268

All models 0.483 0.349

BBQ microsoft/TNLGv2_530B 0.591 0.252

All models 0.567 0.265

TruthfulQA microsoft/TNLGv2_530B 0.482 0.263

Table A.4: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the three metacognition scale, with the outputs of the original HELM models and Mi-

crosoft’s TNLGv2_530B Model, with results disaggregated by individual benchmarks.

A.2.2. GPT Family

When applying the three metacognition scales to the instance outputs of the GPT fam-
ily, we observe a general increase in predictability for the combined benchmarks (Table
A.5. The assessors achieved higher predictability compared to the single metacognition
scale. This indicates that the three metacognition scales capture additional dimensions
of metacognitive demand that are relevant even in datasets with minimal metacognitive
content.

When examining individual benchmarks (Table A.6, the predictability results var-
ied. For most benchmarks, there was a decrease in predictability compared to the single
metacognition scale. However, for the College Chemistry benchmark from the MMLU
dataset and the TruthfulQA benchmark, the predictability has improved. This suggests
that certain domains within the HELM benchmarks may still benefit from a more de-
tailed metacognitive assessment, even if the overall metacognitive content is low. The
improved predictability for the College Chemistry and TruthfulQA benchmarks may in-
dicate that these tasks may involve elements of metacognitive processing that are better
captured by the three metacognition scales. For instance, TruthfulQA may involve dis-
cerning the veracity of statements, which could engage metacognitive skills.

Model AUC Brier score

GPT3.5 0.626 0.242

GPT4 0.686 0.226

Table A.5: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the general difficulty scale, with the outputs of the models GPT-3.5 and GPT-4, with results

disaggregated by individual benchmarks.
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Benchmarks Model AUC Brier score

GPT3.5 0.484 0.294

MMLU Abstract Algebra GPT4 0.471 0.296

GPT3.5 0.659 0.231

MMLU Computer Security GPT4 0.453 0.241

GPT3.5 0.723 0.214

MMLU College Chemistry GPT4 0.702 0.213

GPT3.5 0.498 0.293

MMLU Econometrics GPT4 0.541 0.271

GPT3.5 0.453 0.246

MMLU US Foreign Policy GPT4 0.271 0.230

GPT3.5 0.514 0.251

BBQ GPT4 0.482 0.260

GPT3.5 0.679 0.215

TruthfulQA GPT4 0.521 0.247

Table A.6: Assessor performance on the contrast datasets (non-metacognition-loaded) evaluated
using the three metacoognition scale, with the outputs of the models GPT-3.5 and GPT-4, with

results disaggregated by individual benchmarks.



APPENDIX B

Sustainable Development Goals

Our research aligns with several Sustainable Development Goals (SDGs) set by the United
Nations. By advancing our understanding of AI metacognition and developing robust
frameworks for evaluating AI performance, this research contributes to the following
SDGs:

Sustainable Development Goals High Medium Low
Not

applicable

SDG 1. No poverty. X

SDG 2. Zero hunger. X

SDG 3. Good health and well-being. X

SDG 4. Quality education. X

SDG 5. Gender equality. X

SDG 6. Clean water and sanitation. X

SDG 7. Affordable and clean energy. X

SDG 8. Decent work and economic growth. X

SDG 9. Industry, innovation, and infrastructure. X

SDG 10. Reduced inequalities. X

SDG 11. Sustainable cities and communities. X

SDG 12. Responsible consumption and production. X

SDG 13. Climate action. X

SDG 14. Life below water. X

SDG 15. Life on land. X

SDG 16. Peace, justice, and strong institutions. X

SDG 17. Partnerships for the goals. X

1. SDG 4: Quality Education: The development of AI systems with enhanced metacog-
nitive abilities can significantly impact the field of education. AI-driven educational
tools that can self-evaluate and adapt to the needs of individual learners can pro-
vide personalized learning experiences and enhance critical thinking, and thereby
improving educational outcomes.
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2. SDG 9: Industry, Innovation, and Infrastructure: Our research promotes innova-
tion in the field of artificial intelligence, driving the development of more advanced
and capable AI systems. By creating predictive frameworks and robust evaluation
tools for AI systems, we contribute to the development of resilient infrastructure.
These advancements can lead to the creation of smarter, more efficient systems that
drive progress in various fields.

3. SDG 10: Reduced Inequalities: In the long-term, AI systems with improved metacog-
nitive abilities can help reduce inequalities by providing more inclusive and acces-
sible technologies. For instance, AI-driven educational tools can offer personalized
learning experiences to students from diverse backgrounds, helping to bridge the
educational gap and ensuring that the benefits of AI are distributed more equitably.

4. SDG 17: Partnerships for the Goals: The collaborative nature of this research, con-
ducted in partnership with the OECD AI Skills Reasoning Group, highlights the
importance of global partnerships in achieving the SDGs. By working together
with international organizations, academic institutions, and industry leaders, we
can pool resources, knowledge, and expertise to drive the development of AI tech-
nologies that support sustainable development.
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